在孤岛直流微电网系统中,线路阻抗不匹配会影响各线路的电流分配精度和荷电状态(state of charge,SOC)均衡效果。同时,由于采用下垂控制,虚拟阻抗的存在也会导致直流母线电压下降。针对以上问题,提出了一种基于自适应虚拟阻抗的SOC均衡...在孤岛直流微电网系统中,线路阻抗不匹配会影响各线路的电流分配精度和荷电状态(state of charge,SOC)均衡效果。同时,由于采用下垂控制,虚拟阻抗的存在也会导致直流母线电压下降。针对以上问题,提出了一种基于自适应虚拟阻抗的SOC均衡控制策略。该策略考虑了不同容量的分布式储能单元(distributed energy storage units,DESUs),并设计了交互DESUs邻居单元SOC均衡差异信息的收敛因子,以加快SOC均衡速度。利用结合多种系统状态信息的状态因子,通过单补偿环节即可实现输出电流的精准分配以及母线电压的恢复。使用改进后的动态平均一致性算法获取系统全局平均状态信息估计值。最后,在Matlab/Simulink仿真软件中搭建了4种工况模型,验证了所提控制策略的有效性和可靠性。展开更多
针对微电网多储能单元因荷电状态、额定容量和线路阻抗差异导致部分储能单元过充过放,影响其使用寿命进而使微网稳定性调节能力变差的问题,提出一种基于变调节因子的多储能荷电状态(state of charge,SoC)均衡策略,通过反余切函数将下垂...针对微电网多储能单元因荷电状态、额定容量和线路阻抗差异导致部分储能单元过充过放,影响其使用寿命进而使微网稳定性调节能力变差的问题,提出一种基于变调节因子的多储能荷电状态(state of charge,SoC)均衡策略,通过反余切函数将下垂系数与SoC、额定容量关联,并引入虚拟压降补偿环节,实现多组储能单元间SoC均衡。在此基础上设计变调节因子,提高SoC均衡速度。仿真结果验证了所提策略能实现多组储能单元间SoC均衡,有效提升SoC均衡速度,并消除线路阻抗对SoC均衡及电流分配精度的影响。展开更多
为解决传统的下垂控制存在均分精度不足、无法合理分配电流、下垂系数的取值无限制以及电池荷电状态(state of charge, SOC)均衡速度慢的问题,提出一种基于改进下垂系数的SOC均衡下垂控制。首先,分析了传统幂指数形式下垂控制的缺陷,提...为解决传统的下垂控制存在均分精度不足、无法合理分配电流、下垂系数的取值无限制以及电池荷电状态(state of charge, SOC)均衡速度慢的问题,提出一种基于改进下垂系数的SOC均衡下垂控制。首先,分析了传统幂指数形式下垂控制的缺陷,提出幂指数嵌套反正切函数的下垂系数形式,以此来限制下垂系数的取值进而提高控制系统的稳定性与可靠性。随后,针对SOC均衡速度较慢的问题,提出在下垂系数中引进增速因子Q来提升均衡速度,并分析了不同Q值对下垂曲线的影响。最后,搭建仿真模型对改进方法进行对比验证。仿真结果表明所提改进的SOC均衡速度在SOC差距较小时有较大提升。在SOC均衡的过程中,下垂系数的变化更平滑,母线电压在SOC差距较大时也不会发生较大振荡。展开更多
锂电池的荷电状态(state of charge,SOC)是电池管理系统的重要参数,但其与电池内部复杂的电化学特性高度关联,无法直接测量。近年来,基于数据驱动的方法在SOC估计领域展现了极大的潜力,然而其对输入数据的精确性有较高要求。磷酸铁锂电...锂电池的荷电状态(state of charge,SOC)是电池管理系统的重要参数,但其与电池内部复杂的电化学特性高度关联,无法直接测量。近年来,基于数据驱动的方法在SOC估计领域展现了极大的潜力,然而其对输入数据的精确性有较高要求。磷酸铁锂电池因存在电压平台问题,其电压波动和噪声会严重影响SOC估计的精度,本文针对这一问题,通过实验和数据驱动结合的方法,引入电池膨胀力作为新的输入维度,融合电池的电化学特性与机械特性,有效补偿了电压平台问题对SOC估计结果的影响。本研究在4种环境温度和2种动态电流测试工况下进行了实验,利用所得数据对神经网络模型进行训练和测试,以评估SOC估计精度并验证本方法的可行性和普适性。此外,本文还提出了一种基于卷积神经网络(convolutional neural network,CNN)和双向长短期记忆网络(bidirectional long short-term memory,Bi-LSTM)的混合模型,兼顾序列数据的局部模式与长期依赖关系,进一步提升SOC估计的可靠性。结果表明,本文提出的方法可以显著提高磷酸铁锂电池SOC估计精度,相比未引入膨胀力信号,均方根误差(root-mean-square error,RMSE)平均下降了43.82%。同时,CNNBiLSTM模型相比其他常规神经网络模型,RMSE最多降低了53.88%。本研究为高精度SOC估计提供了新的思路,对提升电池管理系统的性能具有重要意义。展开更多
文摘在孤岛直流微电网系统中,线路阻抗不匹配会影响各线路的电流分配精度和荷电状态(state of charge,SOC)均衡效果。同时,由于采用下垂控制,虚拟阻抗的存在也会导致直流母线电压下降。针对以上问题,提出了一种基于自适应虚拟阻抗的SOC均衡控制策略。该策略考虑了不同容量的分布式储能单元(distributed energy storage units,DESUs),并设计了交互DESUs邻居单元SOC均衡差异信息的收敛因子,以加快SOC均衡速度。利用结合多种系统状态信息的状态因子,通过单补偿环节即可实现输出电流的精准分配以及母线电压的恢复。使用改进后的动态平均一致性算法获取系统全局平均状态信息估计值。最后,在Matlab/Simulink仿真软件中搭建了4种工况模型,验证了所提控制策略的有效性和可靠性。
文摘针对微电网多储能单元因荷电状态、额定容量和线路阻抗差异导致部分储能单元过充过放,影响其使用寿命进而使微网稳定性调节能力变差的问题,提出一种基于变调节因子的多储能荷电状态(state of charge,SoC)均衡策略,通过反余切函数将下垂系数与SoC、额定容量关联,并引入虚拟压降补偿环节,实现多组储能单元间SoC均衡。在此基础上设计变调节因子,提高SoC均衡速度。仿真结果验证了所提策略能实现多组储能单元间SoC均衡,有效提升SoC均衡速度,并消除线路阻抗对SoC均衡及电流分配精度的影响。
文摘为解决传统的下垂控制存在均分精度不足、无法合理分配电流、下垂系数的取值无限制以及电池荷电状态(state of charge, SOC)均衡速度慢的问题,提出一种基于改进下垂系数的SOC均衡下垂控制。首先,分析了传统幂指数形式下垂控制的缺陷,提出幂指数嵌套反正切函数的下垂系数形式,以此来限制下垂系数的取值进而提高控制系统的稳定性与可靠性。随后,针对SOC均衡速度较慢的问题,提出在下垂系数中引进增速因子Q来提升均衡速度,并分析了不同Q值对下垂曲线的影响。最后,搭建仿真模型对改进方法进行对比验证。仿真结果表明所提改进的SOC均衡速度在SOC差距较小时有较大提升。在SOC均衡的过程中,下垂系数的变化更平滑,母线电压在SOC差距较大时也不会发生较大振荡。
文摘锂电池的荷电状态(state of charge,SOC)是电池管理系统的重要参数,但其与电池内部复杂的电化学特性高度关联,无法直接测量。近年来,基于数据驱动的方法在SOC估计领域展现了极大的潜力,然而其对输入数据的精确性有较高要求。磷酸铁锂电池因存在电压平台问题,其电压波动和噪声会严重影响SOC估计的精度,本文针对这一问题,通过实验和数据驱动结合的方法,引入电池膨胀力作为新的输入维度,融合电池的电化学特性与机械特性,有效补偿了电压平台问题对SOC估计结果的影响。本研究在4种环境温度和2种动态电流测试工况下进行了实验,利用所得数据对神经网络模型进行训练和测试,以评估SOC估计精度并验证本方法的可行性和普适性。此外,本文还提出了一种基于卷积神经网络(convolutional neural network,CNN)和双向长短期记忆网络(bidirectional long short-term memory,Bi-LSTM)的混合模型,兼顾序列数据的局部模式与长期依赖关系,进一步提升SOC估计的可靠性。结果表明,本文提出的方法可以显著提高磷酸铁锂电池SOC估计精度,相比未引入膨胀力信号,均方根误差(root-mean-square error,RMSE)平均下降了43.82%。同时,CNNBiLSTM模型相比其他常规神经网络模型,RMSE最多降低了53.88%。本研究为高精度SOC估计提供了新的思路,对提升电池管理系统的性能具有重要意义。