期刊文献+
共找到213篇文章
< 1 2 11 >
每页显示 20 50 100
基于SAE和WGAN的入侵检测方法研究 被引量:2
1
作者 刘拥民 许成 +2 位作者 黄浩 张钱垒 赵俊杰 《计算机工程与科学》 北大核心 2025年第2期256-264,共9页
近年来,机器学习和深度学习(ML/DL)领域技术飞速发展,将其应用到IDS中的研究也越来越多。但是,目前入侵检测领域的数据集存在特征冗余和攻击分类样本数量不平衡的问题。针对上述问题,提出基于自编码器SAE和生成对抗网络WGAN的网络异常... 近年来,机器学习和深度学习(ML/DL)领域技术飞速发展,将其应用到IDS中的研究也越来越多。但是,目前入侵检测领域的数据集存在特征冗余和攻击分类样本数量不平衡的问题。针对上述问题,提出基于自编码器SAE和生成对抗网络WGAN的网络异常检测方法。首先,针对特征冗余问题,使用堆叠自编码器的编码-隐层-解码思想进行数据降维,细化各类特征,提取更适用于分类的低维度特征。其次,针对样本不平衡(数据量少、种类不多的)问题,将处理过的数据作为生成器的来源输入到WGAN模型中,利用生成对抗网络的生成功能进行样本扩充,弥补分类模型训练过程中某些类型样本数据不足的问题,最终通过RF分类模型进行检测。在数据集NSL-KDD上的实验结果表明,基于本文方法建立的模型SAE-WGAN-RF的F 1-Score为95.58%,Recall为96.54%,Precision为96.03%,相比常见的经典算法的性能有显著提高。 展开更多
关键词 深度学习 生成对抗网络 异常检测 栈式自编码器
在线阅读 下载PDF
基于SAE和LSTM神经网络的深部未钻地层可钻性预测方法
2
作者 朱亮 李晓明 +1 位作者 纪慧 楼一珊 《西安石油大学学报(自然科学版)》 北大核心 2025年第1期39-46,64,共9页
在制定深部地层钻进提速方案时,对地层可钻性进行钻前预测是十分必要的,现有的岩石可钻性预测方法精度低,难以满足钻井设计的要求。为此,提出一种基于SAE和LSTM神经网络相结合的组合模型对深部未钻地层的可钻性进行预测。并将SAE-LSTM... 在制定深部地层钻进提速方案时,对地层可钻性进行钻前预测是十分必要的,现有的岩石可钻性预测方法精度低,难以满足钻井设计的要求。为此,提出一种基于SAE和LSTM神经网络相结合的组合模型对深部未钻地层的可钻性进行预测。并将SAE-LSTM组合模型的训练时间和预测结果与BP神经网络、支持向量机、随机森林和单一的LSTM模型进行了对比分析。结果表明:所构建的SAE-LSTM组合模型预测地层可钻性训练用时最短,预测值与实际测量值误差最小,拟合结果的均方根误差RMSE仅为0.081,平均绝对百分比误差MAPE为1.189,决定系数R^(2)为0.966,其RMSE和MAPE最小,R 2最大,较其他模型预测精度更高。该方法为地层参数预测提供了新的途径,能改善以往预测方法在处理复杂地层问题时预测效率低、预测精度不高等问题。 展开更多
关键词 深部地层钻探 岩石可钻性 预测模型 栈式自动编码器 LSTM神经网络 深度学习
在线阅读 下载PDF
基于KPCA-SAE-BP模型的有源干扰识别算法
3
作者 赵忠臣 刘利民 +2 位作者 解辉 韩壮志 荆贺 《现代防御技术》 北大核心 2025年第3期159-166,共8页
针对强噪声环境下雷达新型有源干扰识别准确率不高的问题,提出了一种KPCA-SAE-BP网络算法。提取干扰信号时域、频域、波形域、小波域、双谱域等特征构建67维输入空间,经过核主成分分析(kernel principal component analysis,KPCA)将高... 针对强噪声环境下雷达新型有源干扰识别准确率不高的问题,提出了一种KPCA-SAE-BP网络算法。提取干扰信号时域、频域、波形域、小波域、双谱域等特征构建67维输入空间,经过核主成分分析(kernel principal component analysis,KPCA)将高维数据进行非线性降维与重构,利用SAE-BP神经网络完成分类识别。仿真结果表明,在干噪比(JNR)大于-1 dB的强噪声环境中,KPCA-SAE-BP网络算法对6种新型有源干扰的识别准确率达到90%以上,训练与识别时间少于0.7 s。相同参数条件下,与经典BP神经网络、SAE-BP网络、KPCA-BP网络、GA-BP网络相比,具有更好的检测识别性能。 展开更多
关键词 有源干扰识别 核主成分分析 堆叠自编码器 反向传播神经网络 特征提取 特征降维
在线阅读 下载PDF
基于SAE-BP神经网络的审计风险识别研究——以计算机、通信和其他电子设备制造业行业为例 被引量:1
4
作者 刘聪粉 张庚珠 《经济问题》 CSSCI 北大核心 2024年第6期123-128,F0003,共7页
审计风险的识别和评估是现代风险导向审计的重要内容,为准确地识别审计风险,建立了一套基于SAE-BP神经网络的审计风险识别模型。选取16个指标构成重大错报风险评估模型的输入指标体系,利用SAE算法提取特征,通过机器学习模型BP神经网络... 审计风险的识别和评估是现代风险导向审计的重要内容,为准确地识别审计风险,建立了一套基于SAE-BP神经网络的审计风险识别模型。选取16个指标构成重大错报风险评估模型的输入指标体系,利用SAE算法提取特征,通过机器学习模型BP神经网络分类器进行识别,构建SAE-BP神经网络,并选取135个A股上市公司作为样本进行了实证分析。结果表明:该模型运算速度快,模型平均识别准确率较高,可以达到88.5%,能够对审计风险进行高质量识别,有效提高了审计的效率。 展开更多
关键词 审计风险识别 大数据 稀疏自编码器 神经网络
在线阅读 下载PDF
双级联合投影包络内嵌堆栈自动编码器
5
作者 李勇明 朱立志 +2 位作者 王品 马洁 周传艳 《仪器仪表学报》 北大核心 2025年第2期116-131,共16页
深度堆栈自动编码器作为一种代表性的深度网络,已被广泛应用在数据科学、模式识别等领域。现有的深度堆栈自动编码器均针对原样本个体进行深度特征变换,忽略了样本之间的关联结构信息,导致其深度特征的质量往往不尽如人意。为了解决这... 深度堆栈自动编码器作为一种代表性的深度网络,已被广泛应用在数据科学、模式识别等领域。现有的深度堆栈自动编码器均针对原样本个体进行深度特征变换,忽略了样本之间的关联结构信息,导致其深度特征的质量往往不尽如人意。为了解决这一问题,提出一种新的深度堆栈自动编码器网络-双级联合投影包络内嵌堆栈自动编码器。与现有的深度堆栈自动编码器本质上不同的是,双级联合投影包络内嵌堆栈自动编码器针对样本间关联信息而非样本个体本身进行深度特征变换。该模型主要包括两部分:双级联合投影包络模块和内嵌式堆栈自动编码器。在双级联合投影包络模块中,流形样本对包络子模块用于提取原样本间局部关联信息,重构生成第1层包络样本;保持降维式聚类子模块用于提取样本的全局关联信息,重构生成第2层包络样本。双级间一致性保持模块用于优化第2层包络样本的表征能力。然后,在这2层包络样本上分别训练2个内嵌式堆栈自动编码器,获得2组深度特征。组织了4组实验,包括消融实验、算法比较、参数影响分析以及复杂度分析。实验结果表明,双级联合投影包络内嵌堆栈自动编码器提取的深度特征具有较高且稳定的质量。 展开更多
关键词 内嵌堆栈自动编码器 包络学习 双级 包络样本 聚类 域适应
在线阅读 下载PDF
融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法
6
作者 陈虹 由雨竹 +2 位作者 金海波 武聪 邹佳澎 《计算机工程与应用》 北大核心 2025年第9期315-324,共10页
针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解... 针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解决数据不平衡问题。利用堆叠降噪自动编码器(stacked denoising auto encoder,SDAE)进行数据降维,减少噪声对数据的影响,去除冗余特征。采用改进的卷积神经网络(split residual fuse convolutional neural network,SRFCNN)和双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)更好地提取数据中的空间和时间特征,结合注意力机制对特征分配不同的权重,获得更好的分类能力,提高对少数攻击流量的检测率。最后,在UNSW-NB15数据集上对模型进行验证,准确率和F1分数为89.24%和90.36%,优于传统机器学习和深度学习模型。 展开更多
关键词 入侵检测 不平衡处理 堆叠降噪自动编码器 卷积神经网络 注意力机制
在线阅读 下载PDF
滚动轴承的退化特征信息融合与剩余寿命预测
7
作者 张建宇 王留震 +1 位作者 肖勇 马雅楠 《中国机械工程》 北大核心 2025年第7期1553-1561,共9页
针对滚动轴承剩余寿命预测的需求,提出一种基于稀疏自编码器(SAE)和双向长短期记忆网络(BiLSTM)的预测模型。以滚动轴承全寿命振动数据为研究对象,通过构建反双曲变换的状态退化指标和频域谐波退化因子形成退化指标集,并利用SAE特征融... 针对滚动轴承剩余寿命预测的需求,提出一种基于稀疏自编码器(SAE)和双向长短期记忆网络(BiLSTM)的预测模型。以滚动轴承全寿命振动数据为研究对象,通过构建反双曲变换的状态退化指标和频域谐波退化因子形成退化指标集,并利用SAE特征融合提取关键特征,消除冗余信息。同时,结合BiLSTM模型捕捉时序特征,实现全周期寿命预测。实验结果表明,所提模型优于支持向量回归、极限学习机、卷积神经网络等模型,预测误差更小,泛化能力更强。 展开更多
关键词 稀疏自编码器特征融合 双向长短期记忆网络预测模型 滚动轴承 反双曲特征指标 频域谐波退化因子
在线阅读 下载PDF
SAE J1939协议栈设计及μC/OS-Ⅱ系统下的开发平台的研究 被引量:7
8
作者 夏继强 李晓君 +1 位作者 曹磊 孙进 《汽车工程》 EI CSCD 北大核心 2008年第12期1069-1074,共6页
设计了SAE J1939协议栈。它采用分层结构,定义了相应的报文数据结构,并实现了分段传输功能。以该协议栈为核心,提出了一种基于μC/OS-Ⅱ的SAE J1939汽车ECU通用开发平台。通过一个客车用汽车仪表的开发实例,验证了SAE J1939协议栈及该EC... 设计了SAE J1939协议栈。它采用分层结构,定义了相应的报文数据结构,并实现了分段传输功能。以该协议栈为核心,提出了一种基于μC/OS-Ⅱ的SAE J1939汽车ECU通用开发平台。通过一个客车用汽车仪表的开发实例,验证了SAE J1939协议栈及该ECU通用开发平台的正确性。应用此协议栈和通用开发平台,ECU的研发只需编写针对应用的代码,大大缩短了汽车ECU产品的开发周期。 展开更多
关键词 sae J1939 协议栈 CAN总线 ECU μC/OS—Ⅱ
在线阅读 下载PDF
基于粒子群优化堆叠降噪自编码器的电力设备状态数据质量提升
9
作者 计蓉 侯慧娟 +3 位作者 盛戈皞 张立静 舒博 江秀臣 《上海交通大学学报》 北大核心 2025年第6期780-788,I0007,共10页
当下电力设备状态大数据呈现爆炸式增长,设备故障、数据传输以及人为操作失误等原因都会导致问题数据的出现,影响数据质量以及后续分析结果,因此数据清洗具有重要意义.目前大多数研究着力于识别异常数据并直接剔除,破坏了数据的完整性.... 当下电力设备状态大数据呈现爆炸式增长,设备故障、数据传输以及人为操作失误等原因都会导致问题数据的出现,影响数据质量以及后续分析结果,因此数据清洗具有重要意义.目前大多数研究着力于识别异常数据并直接剔除,破坏了数据的完整性.针对此问题,提出一种基于改进堆叠降噪自编码器的数据清洗方法.首先,采用粒子群算法优化堆叠降噪自编码器中的超参数;然后,利用堆叠降噪自编码器提取、还原数据特征的特点来进行数据清洗,实现对孤立点的修复和对空缺数据的填补,以有效提升电力设备状态数据的质量.所提方法简单高效,可以同时提高数据集的准确性和完整性.以电力设备的历史运行数据为例进行测试,算例结果表明所提方法相比于其他经典方法,数据清洗效果更好,且针对不同异常程度和运行状态的数据集都有良好的清洗效果,能够提高电力设备状态数据的质量. 展开更多
关键词 电力设备 状态数据 堆叠降噪自编码器 数据清洗
在线阅读 下载PDF
基于独立稀疏SAE的多风电场超短期功率预测 被引量:9
10
作者 李丹 王奇 +1 位作者 杨保华 张远航 《电力系统及其自动化学报》 CSCD 北大核心 2022年第2期23-30,共8页
为应对多风电场超短期预测模型中输入和输出变量众多、变量间的时空关系复杂等问题,提出一种基于独立稀疏堆叠自编码器的多风电场超短期功率预测方法。该方法基于降维编码、特征预测和重构解码相结合的预测框架,首先设计了一种独立稀疏... 为应对多风电场超短期预测模型中输入和输出变量众多、变量间的时空关系复杂等问题,提出一种基于独立稀疏堆叠自编码器的多风电场超短期功率预测方法。该方法基于降维编码、特征预测和重构解码相结合的预测框架,首先设计了一种独立稀疏双层堆叠自编码器提取多维风电功率的空间独立特征,并将其作为预测对象分别预测,最后将特征预测的结果重构解码,获得多风电场功率的预测结果。对实际算例的验证结果表明,独立稀疏堆叠自编码器能增强提取特征的可靠性、独立性和合理性,从而有效提高多风电场超短期功率预测的精度和效率。 展开更多
关键词 多风电场 功率预测 堆叠自编码器 稀疏性约束 独立性约束
在线阅读 下载PDF
一种SSAE+BPNN的变工况飞灰含碳量软测量方法 被引量:3
11
作者 刘鑫屏 李波 邓拓宇 《热力发电》 CAS CSCD 北大核心 2023年第1期66-73,共8页
火电机组变工况运行使数据呈现多模态特征,导致基于浅层网络结构的回归软测量模型的预测精度下降。研究一种改进的BP神经网络(back propagation neural network,BPNN)软测量方法:首先利用堆叠稀疏自编码器(stacked sparse autoencoder,S... 火电机组变工况运行使数据呈现多模态特征,导致基于浅层网络结构的回归软测量模型的预测精度下降。研究一种改进的BP神经网络(back propagation neural network,BPNN)软测量方法:首先利用堆叠稀疏自编码器(stacked sparse autoencoder,SSAE)强大的深度学习能力提取原始数据特征,然后再利用BPNN对提取特征进行回归分析。经实验验证,SSAE+BPNN软测量方法的均方误差为0.135 8×10–3,平方相关系数为0.983 2,其预测精度和泛化能力显著优于BPNN。将其应用于某台灵活调峰的超超临界660 MW发电机组飞灰含碳量软测量中,预测结果的平均相对误差为0.91%,总体相对误差控制在±5%以内,具有良好的工程应用价值。 展开更多
关键词 堆叠稀疏自编码器 特征提取 软测量 多工况 飞灰含碳量 深度学习
在线阅读 下载PDF
基于优化堆叠降噪自编码器的水轮发电机组故障诊断
12
作者 肖发厚 钟波 +1 位作者 张彬桥 邹霖 《中国农村水利水电》 北大核心 2025年第8期119-125,共7页
针对堆叠降噪自编码器(Stacked Denoising Auto-Encoders, SDAE)在故障诊断中受网络参数影响较大的问题,提出一种新的混合智能算法,旨在自适应提取SDAE网络参数以提高故障诊断准确率。首先,提出改进的哈里斯鹰算法(Harris Hawks Optimiz... 针对堆叠降噪自编码器(Stacked Denoising Auto-Encoders, SDAE)在故障诊断中受网络参数影响较大的问题,提出一种新的混合智能算法,旨在自适应提取SDAE网络参数以提高故障诊断准确率。首先,提出改进的哈里斯鹰算法(Harris Hawks Optimization, HHO),即引入Sin混沌映射和莱维飞行策略以加速HHO算法的收敛速度和提高全局搜索效果;然后,提出改进的沙猫群算法(Sand Cat Swarm Optimization, SCSO),即融合反向学习和柯西变异策略弥补SCSO算法易陷入局部最优解的不足;最后,提出一种切换准测,将改进的HHO算法和改进的SCSO算法融合为HHO-SCSO混合智能算法,以实现两种算法的优势互补,从而弥补各自的不足之处。以水轮发电机组轴承故障诊断为例,采用西安交通大学提供的轴承摩擦实验数据集进行算法验证。实验结果表明,所提方法平均故障诊断准确率达到98.21%,相较于未优化SDAE网络,平均诊断准确率提高了8.19%。与现有水轮发电机组故障诊断方法相比,所提方法具有更好的诊断效率和更高的故障诊断准确率。 展开更多
关键词 堆叠降噪自编码器 混合智能算法 水轮发电机组 故障诊断
在线阅读 下载PDF
一种基于Curv-SAE特征融合的人脸降维和识别方法 被引量:4
13
作者 张志禹 刘思媛 《计算机科学》 CSCD 北大核心 2018年第10期267-271,305,共6页
相比于传统的降维算法,深度学习中的栈式自编码器(Stacked Autoencoder,SAE)能够有效地学习特征并实现高效降维,然而对输入特征极其敏感。第二代离散曲波变换(Discrete Curvelet Transform,DCT)能够提取出人脸的各向信息(包含边缘和概... 相比于传统的降维算法,深度学习中的栈式自编码器(Stacked Autoencoder,SAE)能够有效地学习特征并实现高效降维,然而对输入特征极其敏感。第二代离散曲波变换(Discrete Curvelet Transform,DCT)能够提取出人脸的各向信息(包含边缘和概貌特征),确保SAE的输入特征充分,从而弥补了其不足。因此,提出了一种基于Curv-SAE特征融合的人脸识别降维算法,即对人脸图像进行DCT得到特征脸并将其作为SAE的输入特征进行训练,特征融合后将其输入到分类器中进行识别。在ORL和FERET人脸数据库上的实验表明,与小波变换相比,曲波的特征信息更丰富;与传统的降维算法相比,SAE的特征表达更充分且识别精度更高。 展开更多
关键词 深度学习 人脸识别 第二代离散曲波变换 栈式自编码器 降维
在线阅读 下载PDF
基于SDAE-DCPInformer的电动汽车电池SOC和SOH估算方法
14
作者 彭自然 王顺豪 肖伸平 《智能系统学报》 北大核心 2025年第4期969-983,共15页
针对现有电动汽车电池状态估计方法存在运算效率低和估算准确率低的问题,提出一种模型以估算电动汽车电池荷电状态(state of charge,SOC)和健康状态(state of health,SOH)。采用堆叠降噪自编码器(stacked denosing auto encoder,SDAE)... 针对现有电动汽车电池状态估计方法存在运算效率低和估算准确率低的问题,提出一种模型以估算电动汽车电池荷电状态(state of charge,SOC)和健康状态(state of health,SOH)。采用堆叠降噪自编码器(stacked denosing auto encoder,SDAE)清洗电压、电流和温度数据中的异常数据和空缺数据,减小对估算精度的影响。引入动态通道剪枝(dynamical channel pruning,DCP)技术对Informer模型进行稀疏化处理,提高剪枝后模型的性能和稳定性。将清洗过的数据输入DCPInformer模型实现SOC和SOH的精确估计。实验结果表明,所提出的SDAE-DCPInformer模型估计SOC的平均绝对误差和均方根误差分别达到0.25%和0.38%,估计SOH的平均绝对误差和均方根误差分别达到了0.51%和0.64%。与传统Transformer等模型相比,所提模型预测SOC和SOH的速度更快,估算准确度有效提升,拥有的更好稳定性和泛化性。 展开更多
关键词 电动汽车 动力电池 荷电状态 健康状态 堆叠降噪自编码器 数据清洗 动态通道剪枝 改进Informer
在线阅读 下载PDF
基于SAE-SA-1D-CNN-BGRU的涡扇发动机剩余寿命预测 被引量:1
15
作者 聂磊 蔡文涛 +3 位作者 张吕凡 徐诗奕 吴柔慧 任一竹 《航空发动机》 北大核心 2023年第4期134-139,共6页
为解决涡扇发动机监测数据维度高和寿命预测准确度低的问题,提出一种基于深度学习的寿命预测方法,开展了利用神经网络获取涡扇发动机剩余寿命的研究。利用堆叠自编码(SAE)网络从高维传感器数据中提取健康因子(HI),采用1维卷积神经网络-... 为解决涡扇发动机监测数据维度高和寿命预测准确度低的问题,提出一种基于深度学习的寿命预测方法,开展了利用神经网络获取涡扇发动机剩余寿命的研究。利用堆叠自编码(SAE)网络从高维传感器数据中提取健康因子(HI),采用1维卷积神经网络-双向门控循环单元(1D-CNN-BGRU)方法捕捉HI序列中的空间和时间特征,并引入自注意(SA)机制对捕捉的特征分配权重,使用全连接层输出涡扇发动机剩余使用寿命(RUL),以此构建复合神经网络进行面向涡扇发动机高维数据的寿命预测。结果表明:利用NASA官方网站提供的涡扇发动机寿命试验公开数据集C-MAPSS对该方法进行验证,取得了均方根误差16.22和评分函数225的结果。证明了基于SAE-SA-1D-CNN-BGRU的寿命预测方法可实现涡扇发动机寿命的有效预测,能为涡扇发动机维修保障及健康管理提供有效决策支撑。 展开更多
关键词 剩余使用寿命 堆叠自编码网络 1维卷积神经网络 双向门控循环单元 涡扇发动机 智能运维 深度学习
在线阅读 下载PDF
基于堆叠降噪自编码网络和多源数据加权融合的发电机故障诊断方法
16
作者 邢超 马红升 +3 位作者 覃日升 张明强 鄢晶 刘焱 《高压电器》 北大核心 2025年第5期170-178,共9页
随着电力系统中参与调节的机组日益增多,工业负荷比重逐步上涨,单一数据源已无法满足新型电力系统中机组状态在线监测的精度需求。为此文中结合堆叠降噪自编码(stacked denoisingautoencoder,SDAE)网络和多源数据融合技术提出了一种发... 随着电力系统中参与调节的机组日益增多,工业负荷比重逐步上涨,单一数据源已无法满足新型电力系统中机组状态在线监测的精度需求。为此文中结合堆叠降噪自编码(stacked denoisingautoencoder,SDAE)网络和多源数据融合技术提出了一种发电机状态监测方法。首先,提出了一种基于加权D⁃S证据理论的SCADA⁃PMU数据融合方法;然后引入自动编码技术构建堆叠降噪自编码深度学习网络模型,提取训练数据集的深度特征,构建发电机故障检测模型;最后通过对重构误差进行平滑处理,结合自适应阈值检测状态监测量的趋势变化,实现故障判定。算例仿真结果表明,相比于基于单一数据源的传统方法,文中提出的方法具有更高的鲁棒性和精确性,从而有效提升了发电机故障诊断和状态监测的精细化水平。 展开更多
关键词 D⁃S证据理论 堆叠降噪自编码网络 故障诊断 状态检测
在线阅读 下载PDF
一种基于自编码器降维的神经卷积网络入侵检测模型
17
作者 孙敬 丁嘉伟 冯光辉 《电信科学》 北大核心 2025年第2期129-138,共10页
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim... 为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。 展开更多
关键词 网络攻击 入侵检测模型 堆叠降噪稀疏自编码器 卷积注意力机制 残差网络
在线阅读 下载PDF
基于Hilbert边际谱和SAE-DNN的局部放电模式识别方法 被引量:10
18
作者 高佳程 朱永利 +2 位作者 郑艳艳 张科 刘帅 《电力系统自动化》 EI CSCD 北大核心 2019年第1期87-94,共8页
提出了一种基于Hilbert边际谱和稀疏自编码器(SAE)—深度神经网络(DNN)的局部放电(PD)信号的模式识别方法。首先,以变分模态分解(VMD)对PD信号进行分解,对所得各分量进行Hilbert变换构建相应的Hilbert边际谱。其次,以PD信号的Hilbert边... 提出了一种基于Hilbert边际谱和稀疏自编码器(SAE)—深度神经网络(DNN)的局部放电(PD)信号的模式识别方法。首先,以变分模态分解(VMD)对PD信号进行分解,对所得各分量进行Hilbert变换构建相应的Hilbert边际谱。其次,以PD信号的Hilbert边际谱为输入数据,利用SAE自动学习复杂数据的内在特征来提取简明的数据特征表达获得参数。再次,利用SAE的训练结果初始化DNN,再以大量训练样本进行分类器的训练。同时,为了加快SAE和DNN学习过程的收敛速度,以自适应步长的学习速率对网络进行调优,更新权值参数。最后,用训练好的DNN完成测试样本的PD类型的识别。此外,以基于BP神经网络和支持向量机的识别结果与文中结果进行比较。实验结果证明,所采用的识别方法具有更高的正确识别率。 展开更多
关键词 局部放电 模式识别 Hilbert边际谱 稀疏自编码器 深度神经网络
在线阅读 下载PDF
基于堆叠集成学习的非侵入式负荷高精度辨识方法
19
作者 黄宇 何耿生 +4 位作者 刘西卓 刘玺 牟景艳 陈学艳 曾金灿 《计算机应用》 北大核心 2025年第S1期323-328,共6页
非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一N... 非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一NILM模型面对不同类型的负荷时准确性差异较大,使用单一方法难以在各类负荷上均取得理想效果。因此,提出一种基于堆叠集成学习的非侵入式负荷高精度辨识方法 AMEL(Aggregation Method based on Ensemble Learning)。首先,选择在各种类型的负荷中表现最优的几种方法构建NILM模型库;其次,建立一个基于多层感知机(MLP)的NILM模型偏好框架,以实现对不同负荷的高精度监测。在UK-DALE数据集上的实验结果表明,与典型的NILM方法相比,所提方法的平均绝对误差(MAE)平均降低了35.6%,F1、召回率和马修斯相关系数(MCC)分别平均提升了33.5%、30.6%和32.1%。此外,通过比较现有的堆叠集成方法和各类设备的辨识波形,验证了所提方法的有效性。 展开更多
关键词 非侵入式负荷监测 集成学习 堆叠方法 序列到序列 双向长短期记忆网络 去噪自编码器
在线阅读 下载PDF
一种基于BOA-SAE-EELM的光伏阵列故障诊断方法 被引量:9
20
作者 陈世群 杨耿杰 高伟 《太阳能学报》 EI CAS CSCD 北大核心 2022年第4期154-161,共8页
光伏阵列非线性输出的特性以及最大功率点跟踪算法,会影响光伏阵列保护设备的工作。为了正确辨识光伏阵列的运行状态,本研究提出一种基于贝叶斯优化算法(BOA)、堆栈自动编码器(SAE)以及集成极限学习机(EELM)相结合的故障诊断方法。首先... 光伏阵列非线性输出的特性以及最大功率点跟踪算法,会影响光伏阵列保护设备的工作。为了正确辨识光伏阵列的运行状态,本研究提出一种基于贝叶斯优化算法(BOA)、堆栈自动编码器(SAE)以及集成极限学习机(EELM)相结合的故障诊断方法。首先,将光伏阵列的时序波形进行标准化处理;接着,使用SAE对标准化后的时序波形进行特征自动提取,并训练一个EELM的故障分类模型;最后,利用BOA对诊断模型的超参数进行优化。实验结果表明所提方法对仿真和实验的故障诊断准确率分别达到了98.40%和98.10%,优于反向传播(BP)神经网络、支持向量机、随机森林等方法。 展开更多
关键词 光伏阵列 故障诊断 堆栈自动编码器 极限学习机 贝叶斯优化算法 时序波形
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部