Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To sa...Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To satisfy quality of service(QoS)requirements of various users,it is critical to research efficient routing strategies to fully utilize satellite resources.This paper proposes a multi-QoS information optimized routing algorithm based on reinforcement learning for LEO satellite networks,which guarantees high level assurance demand services to be prioritized under limited satellite resources while considering the load balancing performance of the satellite networks for low level assurance demand services to ensure the full and effective utilization of satellite resources.An auxiliary path search algorithm is proposed to accelerate the convergence of satellite routing algorithm.Simulation results show that the generated routing strategy can timely process and fully meet the QoS demands of high assurance services while effectively improving the load balancing performance of the link.展开更多
The multicast routing problem with multiple QoS constraints in networks with uncertain parameters is discussed, and a network model that is suitable to research such QoS multicast routing problem is described. The QMR...The multicast routing problem with multiple QoS constraints in networks with uncertain parameters is discussed, and a network model that is suitable to research such QoS multicast routing problem is described. The QMRGA, a multicast routing policy for Internet, mobile network or other highperformance networks is mainly presented, which is based on the genetic algorithm(GA), and can provide QoSsensitive paths in a scalable and flexible way in the network environment with uncertain parameters. The QMRGA can also optimize the network resources such as bandwidth and delay, and can converge to the optimal or nearoptimal solution within few iterations, even for the network environment with uncertain parameters. The incremental rate of computational cost can be close to a polynomial and is less than exponential rate. The performance measures of the QMRGA are evaluated by using simulations. The results show that QMRGA provides an available approach to QoS multicast routing in network environment with uncertain parameters.展开更多
Constraint-based multicast routing, which aims at identifying a path that satisfies a set of quality of service (QoS) constraints, has became a very important research issue in the areas of networks and distributed sy...Constraint-based multicast routing, which aims at identifying a path that satisfies a set of quality of service (QoS) constraints, has became a very important research issue in the areas of networks and distributed systems. In general, multi-constrained path selection with or without optimization is a NP-complete problem that can not be exactly solved in polynomial time. Hence, accurate constraints-based routing algorithms with a fast running time are scarce, perhaps even non-existent. The expected impact of such a constrained-based routing algorithm has resulted in the proposal of numerous heuristics and a few exact QoS algorithms. This paper aims to give a thorough, concise and fair evaluation of the most important multiple constraint-based QoS multicast routing algorithms known today, and it provides a descriptive overview and simulation results of these multi-constrained routing algorithms.展开更多
In the Internet, a group of replicated servers is commonly used in order to improve the scalability of network service. Anycast service is a new network service that can improve network load distribution and simplify ...In the Internet, a group of replicated servers is commonly used in order to improve the scalability of network service. Anycast service is a new network service that can improve network load distribution and simplify certain applications. In this paper, the authors described a simple anycast service model in the Internet without significant affecting the routing and protocol processing infrastructure that was already in place, and proposed an anycast QoS routing algorithm for this model. The algorithm used randomized method to balance network load and improve its performance. Several new techniques are proposed in the algorithm, first, theminimum hops for each node are used in the algorithm, which are used as metric for computing the probability of possible out links. The metric is pre computed for each node in the network, which can simplify the network complexity and provide the routing process with useful information. Second, randomness is used at the link level and depends dynamically on the routing configuration. This provides great flexibility for the routing process, prevents the routing process from overusing certain fixed routing paths, and adequately balances the delay of the routing path. the authors assess the quality of QoS algorithm in terms of the acceptance ratio on anycast QoS requests, and the simulation results on a variety of network topologies and on various parameters show that the algorithm has good performances and can balance network load effectively.展开更多
The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency...The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.展开更多
There were many contradictory evaluation criteria to select next-hop in the delay-disruption tolerance networks(DTN).To solve this problem,an attribute hierarchical model was proposed,in which the predefined criteria ...There were many contradictory evaluation criteria to select next-hop in the delay-disruption tolerance networks(DTN).To solve this problem,an attribute hierarchical model was proposed,in which the predefined criteria were summarized as static identity attributes,forwarding desire attributes and delivery capability attributes(IDC).Based on this model,a novel multi-attributes congestion aware routing(MACAR) scheme with uncertain information for next-hop selection was presented,by adopting an decision theory to aggregate attributes with belief structure and computing partial ordering relations.The simulation results show that MACAR presents higher successful delivery rate,lower average delay and effectively alleviate congestion.展开更多
The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendl...The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendly but need to be recharged in course of transport process,are employed.A mathematical model for this optimization problem is established with the objective of minimizing the function composed of vehicle cost,distribution cost,time window penalty cost and charging service cost.To solve the problem,an estimation of the distribution algorithm based on Lévy flight(EDA-LF)is proposed to perform a local search at each iteration to prevent the algorithm from falling into local optimum.Experimental results demonstrate that the EDA-LF algorithm can find better solutions and has stronger robustness than the basic EDA algorithm.In addition,when comparing with existing algorithms,the result shows that the EDA-LF can often get better solutions in a relatively short time when solving medium and large-scale instances.Further experiments show that using electric multi-compartment vehicles to deliver incompatible products can produce better results than using traditional fuel vehicles.展开更多
Improved traditional ant colony algorithms,a data routing model used to the data remote exchange on WAN was presented.In the model,random heuristic factors were introduced to realize multi-path search.The updating mod...Improved traditional ant colony algorithms,a data routing model used to the data remote exchange on WAN was presented.In the model,random heuristic factors were introduced to realize multi-path search.The updating model of pheromone could adjust the pheromone concentration on the optimal path according to path load dynamically to make the system keep load balance.The simulation results show that the improved model has a higher performance on convergence and load balance.展开更多
Quality of service (QoS) multicast routing has continued to be a very important research topic in the Internet. A method of multicast routing is proposed to simultaneously optimize several parameters based on multiobj...Quality of service (QoS) multicast routing has continued to be a very important research topic in the Internet. A method of multicast routing is proposed to simultaneously optimize several parameters based on multiobjective genetic algorithm, after the related work is reviewed. The contribution lies on that the selection process of such routing is treated with multiobjective optimization. Different quality criterions in IP network are taken into account for multicast communications. A set of routing trees is generated to approximate the Pareto front of multicast problem. Multiple trees can be selected from the final set of nondominated solutions, and applied to obtain a good overall link cost and balance traffic distribution according to some simulation results.展开更多
An efficient QoS routing algorithm was proposed for multiple constrained path selection. Making use of efficient pruning policy, the algorithm reduces greatly the size of search space and the computing time. Although ...An efficient QoS routing algorithm was proposed for multiple constrained path selection. Making use of efficient pruning policy, the algorithm reduces greatly the size of search space and the computing time. Although the proposed algorithm has exponential time complexity in the worst case, it can get the running results quickly in practical application. When the scale of network increases, the algorithm can efficiently control the size of search space by constraint conditions and prior queue. The results of simulation show that successful request ratio ( r ) of efficient algorithm for multi-constrained optimal path (EAMCOP) is better than that of heuristic algorithm for multi-constrained optimal path (H-MCOP), but average computing time ( t ) of EAMCOP is far less than that of H-MCOP. And it can be seen that the computing time of EAMCOP is only one fourth of that of H-MCOP in Advanced Research Projects Agency Network (ARPANet) topology.展开更多
A novel reliable routing algorithm in mobile ad hoc networks using fuzzy Petri net with its reasoning mechanism was proposed to increase the reliability during the routing selection. The algorithm allows the structure...A novel reliable routing algorithm in mobile ad hoc networks using fuzzy Petri net with its reasoning mechanism was proposed to increase the reliability during the routing selection. The algorithm allows the structured representation of network topology, which has a fuzzy reasoning mechanism for finding the routing sprouting tree from the source node to the destination node in the mobile ad boc environment. Finally, by comparing the degree of reliability in the routing sprouting tree, the most reliable route can be computed. The algorithm not only offers the local reliability between each neighboring node, but also provides global reliability for the whole selected route. The algorithm can be applied to most existing on-demand routing protocols, and the simulation results show that the routing reliability is increased by more than 80% when applying the proposed algorithm to the ad hoc on demand distance vector routing protocol.展开更多
A routing algorithm for distributed optimal double loop computer networks is proposed and analyzed. In this paper, the routing algorithm rule is described, and the procedures realizing the algorithm are given. The pr...A routing algorithm for distributed optimal double loop computer networks is proposed and analyzed. In this paper, the routing algorithm rule is described, and the procedures realizing the algorithm are given. The proposed algorithm is shown to be optimal and robust for optimal double loop. In the absence of failures,the algorithm can send a packet along the shortest path to destination; when there are failures,the packet can bypasss failed nodes and links.展开更多
The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a nove...The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.展开更多
To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.Fir...To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.展开更多
A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MC...A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MCP) problem, and has been proven to be NP-complete that cannot be exactly solved in a polynomial time. The NPC problem is converted into a multiobjective optimization problem with constraints to be solved with a genetic algorithm. Based on the Pareto optimum, a constrained routing computation method is proposed to generate a set of nondominated optimal routes with the genetic algorithm mechanism. The convergence and time complexity of the novel algorithm is analyzed. Experimental results show that multiobjective evolution is highly responsive and competent for the Pareto optimum-based route selection. When this method is applied to a MPLS and metropolitan-area network, it will be capable of optimizing the transmission performance.展开更多
基金National Key Research and Development Program(2021YFB2900604)。
文摘Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To satisfy quality of service(QoS)requirements of various users,it is critical to research efficient routing strategies to fully utilize satellite resources.This paper proposes a multi-QoS information optimized routing algorithm based on reinforcement learning for LEO satellite networks,which guarantees high level assurance demand services to be prioritized under limited satellite resources while considering the load balancing performance of the satellite networks for low level assurance demand services to ensure the full and effective utilization of satellite resources.An auxiliary path search algorithm is proposed to accelerate the convergence of satellite routing algorithm.Simulation results show that the generated routing strategy can timely process and fully meet the QoS demands of high assurance services while effectively improving the load balancing performance of the link.
文摘The multicast routing problem with multiple QoS constraints in networks with uncertain parameters is discussed, and a network model that is suitable to research such QoS multicast routing problem is described. The QMRGA, a multicast routing policy for Internet, mobile network or other highperformance networks is mainly presented, which is based on the genetic algorithm(GA), and can provide QoSsensitive paths in a scalable and flexible way in the network environment with uncertain parameters. The QMRGA can also optimize the network resources such as bandwidth and delay, and can converge to the optimal or nearoptimal solution within few iterations, even for the network environment with uncertain parameters. The incremental rate of computational cost can be close to a polynomial and is less than exponential rate. The performance measures of the QMRGA are evaluated by using simulations. The results show that QMRGA provides an available approach to QoS multicast routing in network environment with uncertain parameters.
文摘Constraint-based multicast routing, which aims at identifying a path that satisfies a set of quality of service (QoS) constraints, has became a very important research issue in the areas of networks and distributed systems. In general, multi-constrained path selection with or without optimization is a NP-complete problem that can not be exactly solved in polynomial time. Hence, accurate constraints-based routing algorithms with a fast running time are scarce, perhaps even non-existent. The expected impact of such a constrained-based routing algorithm has resulted in the proposal of numerous heuristics and a few exact QoS algorithms. This paper aims to give a thorough, concise and fair evaluation of the most important multiple constraint-based QoS multicast routing algorithms known today, and it provides a descriptive overview and simulation results of these multi-constrained routing algorithms.
基金TheNationalScienceFundforOverseasDistinguishedYoungScholars (No .6 992 82 0 1)FoundationforUniversityKeyTeacherbytheMinist
文摘In the Internet, a group of replicated servers is commonly used in order to improve the scalability of network service. Anycast service is a new network service that can improve network load distribution and simplify certain applications. In this paper, the authors described a simple anycast service model in the Internet without significant affecting the routing and protocol processing infrastructure that was already in place, and proposed an anycast QoS routing algorithm for this model. The algorithm used randomized method to balance network load and improve its performance. Several new techniques are proposed in the algorithm, first, theminimum hops for each node are used in the algorithm, which are used as metric for computing the probability of possible out links. The metric is pre computed for each node in the network, which can simplify the network complexity and provide the routing process with useful information. Second, randomness is used at the link level and depends dynamically on the routing configuration. This provides great flexibility for the routing process, prevents the routing process from overusing certain fixed routing paths, and adequately balances the delay of the routing path. the authors assess the quality of QoS algorithm in terms of the acceptance ratio on anycast QoS requests, and the simulation results on a variety of network topologies and on various parameters show that the algorithm has good performances and can balance network load effectively.
基金Project(50775089)supported by the National Natural Science Foundation of ChinaProject(2007AA04Z190,2009AA043301)supported by the National High Technology Research and Development Program of ChinaProject(2005CB724100)supported by the National Basic Research Program of China
文摘The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.
基金Project(60973127) supported by the National Natural Science Foundation of ChinaProject(09JJ3123) supported by the Natural Science Foundation of Hunan Province,China
文摘There were many contradictory evaluation criteria to select next-hop in the delay-disruption tolerance networks(DTN).To solve this problem,an attribute hierarchical model was proposed,in which the predefined criteria were summarized as static identity attributes,forwarding desire attributes and delivery capability attributes(IDC).Based on this model,a novel multi-attributes congestion aware routing(MACAR) scheme with uncertain information for next-hop selection was presented,by adopting an decision theory to aggregate attributes with belief structure and computing partial ordering relations.The simulation results show that MACAR presents higher successful delivery rate,lower average delay and effectively alleviate congestion.
基金supported by the National Natural Science Foundation of China(71571076)the National Key R&D Program for the 13th-Five-Year-Plan of China(2018YFF0300301).
文摘The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendly but need to be recharged in course of transport process,are employed.A mathematical model for this optimization problem is established with the objective of minimizing the function composed of vehicle cost,distribution cost,time window penalty cost and charging service cost.To solve the problem,an estimation of the distribution algorithm based on Lévy flight(EDA-LF)is proposed to perform a local search at each iteration to prevent the algorithm from falling into local optimum.Experimental results demonstrate that the EDA-LF algorithm can find better solutions and has stronger robustness than the basic EDA algorithm.In addition,when comparing with existing algorithms,the result shows that the EDA-LF can often get better solutions in a relatively short time when solving medium and large-scale instances.Further experiments show that using electric multi-compartment vehicles to deliver incompatible products can produce better results than using traditional fuel vehicles.
基金Sponsored by the National High Technology Research and Development Program of China(2006AA701306)the National Innovation Foundation of Enterprises(05C26212200378)
文摘Improved traditional ant colony algorithms,a data routing model used to the data remote exchange on WAN was presented.In the model,random heuristic factors were introduced to realize multi-path search.The updating model of pheromone could adjust the pheromone concentration on the optimal path according to path load dynamically to make the system keep load balance.The simulation results show that the improved model has a higher performance on convergence and load balance.
文摘Quality of service (QoS) multicast routing has continued to be a very important research topic in the Internet. A method of multicast routing is proposed to simultaneously optimize several parameters based on multiobjective genetic algorithm, after the related work is reviewed. The contribution lies on that the selection process of such routing is treated with multiobjective optimization. Different quality criterions in IP network are taken into account for multicast communications. A set of routing trees is generated to approximate the Pareto front of multicast problem. Multiple trees can be selected from the final set of nondominated solutions, and applied to obtain a good overall link cost and balance traffic distribution according to some simulation results.
文摘An efficient QoS routing algorithm was proposed for multiple constrained path selection. Making use of efficient pruning policy, the algorithm reduces greatly the size of search space and the computing time. Although the proposed algorithm has exponential time complexity in the worst case, it can get the running results quickly in practical application. When the scale of network increases, the algorithm can efficiently control the size of search space by constraint conditions and prior queue. The results of simulation show that successful request ratio ( r ) of efficient algorithm for multi-constrained optimal path (EAMCOP) is better than that of heuristic algorithm for multi-constrained optimal path (H-MCOP), but average computing time ( t ) of EAMCOP is far less than that of H-MCOP. And it can be seen that the computing time of EAMCOP is only one fourth of that of H-MCOP in Advanced Research Projects Agency Network (ARPANet) topology.
文摘A novel reliable routing algorithm in mobile ad hoc networks using fuzzy Petri net with its reasoning mechanism was proposed to increase the reliability during the routing selection. The algorithm allows the structured representation of network topology, which has a fuzzy reasoning mechanism for finding the routing sprouting tree from the source node to the destination node in the mobile ad boc environment. Finally, by comparing the degree of reliability in the routing sprouting tree, the most reliable route can be computed. The algorithm not only offers the local reliability between each neighboring node, but also provides global reliability for the whole selected route. The algorithm can be applied to most existing on-demand routing protocols, and the simulation results show that the routing reliability is increased by more than 80% when applying the proposed algorithm to the ad hoc on demand distance vector routing protocol.
文摘A routing algorithm for distributed optimal double loop computer networks is proposed and analyzed. In this paper, the routing algorithm rule is described, and the procedures realizing the algorithm are given. The proposed algorithm is shown to be optimal and robust for optimal double loop. In the absence of failures,the algorithm can send a packet along the shortest path to destination; when there are failures,the packet can bypasss failed nodes and links.
基金Fundamental Research Funds for the Central Universities(2024JBZX038)National Natural Science F oundation of China(62076023)。
文摘The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.
基金Project(60925011) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(9140A06040510BQXXXX) supported by Advanced Research Foundation of General Armament Department,China
文摘To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.
基金the Natural Science Foundation of Anhui Province of China (050420212)the Excellent Youth Science and Technology Foundation of Anhui Province of China (04042069).
文摘A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MCP) problem, and has been proven to be NP-complete that cannot be exactly solved in a polynomial time. The NPC problem is converted into a multiobjective optimization problem with constraints to be solved with a genetic algorithm. Based on the Pareto optimum, a constrained routing computation method is proposed to generate a set of nondominated optimal routes with the genetic algorithm mechanism. The convergence and time complexity of the novel algorithm is analyzed. Experimental results show that multiobjective evolution is highly responsive and competent for the Pareto optimum-based route selection. When this method is applied to a MPLS and metropolitan-area network, it will be capable of optimizing the transmission performance.