Space time trellis coding (STTC) techniques have been proposed to achieve both diversity and coding gains in multiple input multiple output (MIMO) fading channels. But with more transmit antennas STTCs suffer from...Space time trellis coding (STTC) techniques have been proposed to achieve both diversity and coding gains in multiple input multiple output (MIMO) fading channels. But with more transmit antennas STTCs suffer from the design dificulty and complexity increasing. This paper proposes a scheme, named parallel concatenated space time trellis codes (PC-STTC), to achieve the tradeoff between the performances and complexity of STTCs for a large number of transmit antennas. Simulation results and complexity comparison are provided to demonstrate the performance and superiority of the proposed scheme over conventional schemes in fast fading channels in low signal-to-noise ratio (SNR) regions. And an EXIT (extrinsic information transform) chart is given to analyze the iterative convergence of the proposed scheme. It shows that PC-STTC has better iterative convergence in low SNR regions.展开更多
The emerging ultra-wideband (UWB) system offers a great potential for the design of high-speed short-range communications.Compared with great progress at physical layer,the corresponding medium access control (MAC) la...The emerging ultra-wideband (UWB) system offers a great potential for the design of high-speed short-range communications.Compared with great progress at physical layer,the corresponding medium access control (MAC) layer designs are naturally placed on the schedules.We focus on the optimal power load scheme,which is an integral part of the MAC layer protocol design,for UWB space-time coded (STC) orthogonal frequency-division multiplexing (OFDM) transmissions.Assumed the transmitter has perfect or partial channel stage information (CSI).Based on the optimization criteria of maximizing capacity,three kinds of power load schemes were presented with different tradeoff among performance,complexity and feedback bandwidth overhead.The proposed schemes are verified and compared under the channel prototype proposed by IEEE 802.15.3a Task Group.展开更多
A differential modulation scheme using space-time block codes is put forward. Compared with other schemes, our scheme has lower computational complexity and has a simpler decoder. In the case of three or four transmit...A differential modulation scheme using space-time block codes is put forward. Compared with other schemes, our scheme has lower computational complexity and has a simpler decoder. In the case of three or four transmitter antennas, our scheme has a higher rate a higher coding gain and a lower bit error rate for a given rate. Then we made simulations for space-time block codes as well as group codes in the case of two, three, four and five transmit antennas. The simulations prove that using two transmit antennas, one receive antenna and code rate of 4 bits/s/Hz, the differential STBC method outperform the differential group codes method by 4 dB. Useing three, four and five transmit antennas, one receive antenna, and code rate of 3 bits/s/Hz are adopted, the differential STBC method outperform the differential group codes method by 5 dB, 6. 5 dB and 7 dB, respectively. In other words, the differential modulation scheme based on space-time block code is better than the corresponding differential modulation scheme展开更多
The simplified joint channel estimation and symbol detection based on the EM (expectation-maximization) algorithm for space-time block code (STBC) are proposed. By assuming channel to be invariant within only one STBC...The simplified joint channel estimation and symbol detection based on the EM (expectation-maximization) algorithm for space-time block code (STBC) are proposed. By assuming channel to be invariant within only one STBC word and utilizing the orthogonal structure of STBC, the computational complexity and cost of this algorithm are both very low, so it is very suitable to implementation in real systems.展开更多
Space-time coding is an important technique that can improve transmission performance at fading environments in mobile communication systems. In this paper, we propose a novel diversity scheme using spread spacetime b...Space-time coding is an important technique that can improve transmission performance at fading environments in mobile communication systems. In this paper, we propose a novel diversity scheme using spread spacetime block coding (SSTBC) in multiple antenna systems. At the transmitter, the primitive data are serial to parallel converted to multiple data streams, and each stream is rotated in constellation. Then Walsh codes are used to spread each symbol to all antenna space in a space-time block. The signals received from all receiver antennas are combined with the maximum ratio combining (MRC), equalized with linear equalizer to eliminate the inter-code interference and finally demodulated to recover to transmit data by using the one-symbol maximum likelihood detector. The proposed scheme does not sacrifice the spectrum efficiency meanwhile maintains the transceiver with low complexity. Owing to the transmission symbols of different transmit antennas passing through all the spatial subchannels between transceiver antenna pairs, the system obtains the partial additional space diversity gain of all spatial paths. It is also shown that the diversity gain is better than the previous space-time block coding (STBC) schemes with full transmission rate.展开更多
Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit...Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit element increases.A subarray-based space-time coding(sub-STC)radar is explored to alleviate the range resolution reduction.For the proposed radar configuration,an identical waveform is transmitted and it introduces a small time offset in different subarrays.The multidimensional ambiguity function of sub-STC radar is defined by considering resolutions in multiple domains including the range,Doppler,angle and probing direction.Analyses on properties of the multi-dimensional ambiguity function of the sub-STC radar with regard to the spatial coverage,resolution performance and low sidelobes are also given.Results reveal that the range resolution and low sidelobes performance are improved with the proposed approach.展开更多
An improved scheme with cooperative diversity based on distributed space-time block coding (WCD- DSTBC) is proposed, which effectively achieves diversity gains and improves the performance of the system by sharing s...An improved scheme with cooperative diversity based on distributed space-time block coding (WCD- DSTBC) is proposed, which effectively achieves diversity gains and improves the performance of the system by sharing some single-antenna users' antennas to form a virtual antenna array and combining with distributed spacetime block coding (DSTBC) mode. Then the relation between the system BER and the interuser BER for WCDDSTBC scheme is theoretically derived and the closed-form expression of BER for WCD-DSTBC system is obtained. The simulation results show that the proposed WCD-DSTBC scheme achieves distinct gains over the non-cooperative multi-carrier CDMA (MC-CDMA) system. When system BER is le-3 and interuser BER is le-3, about 2.5 dB gain can be gotten. When interuser channel state information (CSI) outgoes the users' individual CSI, about 3 dB gain is also achieved.展开更多
Two optimal power control (PC) schemes under the power constraint for space-time coded multiple input multiple output systems over the flat Rayleigh fading channel with the imperfect channel state information (CSI...Two optimal power control (PC) schemes under the power constraint for space-time coded multiple input multiple output systems over the flat Rayleigh fading channel with the imperfect channel state information (CSI) are presented. One is based on the minimization of a bit error rate (BER), and the other is based on the maximization of a fuzzy signal-to-noise ratio. In these schemes, different powers are allocated to individual transmit an- tennas rather than equal power in the conventional one. For the first scheme, the optimal PC procedure is developed. It is shown that the Lagrange multiplier for the constrained optimization in the power control does exist and is unique. A practical iterative algorithm based on Newton's method for finding the Lagrange multiplier is proposed. In the second scheme, some existing schemes are included, and a suboptimal PC procedure is developed by means of the asymptotic performance analysis. With this suboptimal scheme, a simple PC calculation formula is provided, and thus the calculation of the PC will be straightforward. Moreover, the suboptimal scheme has the BER performance close to the optimal scheme. Simulation results show that the two PC schemes can provide BER lower than the equal PC and antenna selection scheme under the imperfect CSI.展开更多
在协同中继系统中,应用分布式空时码(Distributed Space Time Coding,DSTC),可以在有效提高系统效率的同时获得全协同分集。但是,各中继节点的异步传输和节点间的多径衰落会破坏空时码字的结构,使之不能获得全分集。本文针对两中继的异...在协同中继系统中,应用分布式空时码(Distributed Space Time Coding,DSTC),可以在有效提高系统效率的同时获得全协同分集。但是,各中继节点的异步传输和节点间的多径衰落会破坏空时码字的结构,使之不能获得全分集。本文针对两中继的异步协同系统,提出了一种频率选择性信道下的基于线性预处理的DSTC传输结构。在此传输结构中,源节点对发送数据块进行预处理后发送给中继节点,中继节点对接收信号进行简单的共轭重排等处理,使得在目的节点形成DSTC的结构。其中,为抵抗异步传输和多径衰落引入的符号间干扰(Inter-symbol Interference,ISI),在源节点处和中继节点处均加入循环前缀(Cyclic Prefix,CP)。于是目的节点对接收到的信号进行DFT处理后,可以运用ML算法对数据信息进行检测。理论分析和仿真表明,当存在定时误差和节点间为频率选择性信道时,目的节点运用ML检测算法该传输结构可获得全空间分集和全多径分集。然后,本文考虑了信道各径延迟为整数倍符号周期的情况,并且证明了该传输结构的分集增益只与节点间信道的有效信道长度有关。展开更多
基金supported by Shanghai Municipal Government and Nokia
文摘Space time trellis coding (STTC) techniques have been proposed to achieve both diversity and coding gains in multiple input multiple output (MIMO) fading channels. But with more transmit antennas STTCs suffer from the design dificulty and complexity increasing. This paper proposes a scheme, named parallel concatenated space time trellis codes (PC-STTC), to achieve the tradeoff between the performances and complexity of STTCs for a large number of transmit antennas. Simulation results and complexity comparison are provided to demonstrate the performance and superiority of the proposed scheme over conventional schemes in fast fading channels in low signal-to-noise ratio (SNR) regions. And an EXIT (extrinsic information transform) chart is given to analyze the iterative convergence of the proposed scheme. It shows that PC-STTC has better iterative convergence in low SNR regions.
基金This work was partially supported by NSF under Grant 60496315 and national "863" projects under Grant2003AA12331005
文摘The emerging ultra-wideband (UWB) system offers a great potential for the design of high-speed short-range communications.Compared with great progress at physical layer,the corresponding medium access control (MAC) layer designs are naturally placed on the schedules.We focus on the optimal power load scheme,which is an integral part of the MAC layer protocol design,for UWB space-time coded (STC) orthogonal frequency-division multiplexing (OFDM) transmissions.Assumed the transmitter has perfect or partial channel stage information (CSI).Based on the optimization criteria of maximizing capacity,three kinds of power load schemes were presented with different tradeoff among performance,complexity and feedback bandwidth overhead.The proposed schemes are verified and compared under the channel prototype proposed by IEEE 802.15.3a Task Group.
基金This project was supported by the National Natural Science Foundation of China (60172018) .
文摘A differential modulation scheme using space-time block codes is put forward. Compared with other schemes, our scheme has lower computational complexity and has a simpler decoder. In the case of three or four transmitter antennas, our scheme has a higher rate a higher coding gain and a lower bit error rate for a given rate. Then we made simulations for space-time block codes as well as group codes in the case of two, three, four and five transmit antennas. The simulations prove that using two transmit antennas, one receive antenna and code rate of 4 bits/s/Hz, the differential STBC method outperform the differential group codes method by 4 dB. Useing three, four and five transmit antennas, one receive antenna, and code rate of 3 bits/s/Hz are adopted, the differential STBC method outperform the differential group codes method by 5 dB, 6. 5 dB and 7 dB, respectively. In other words, the differential modulation scheme based on space-time block code is better than the corresponding differential modulation scheme
基金This project was supported by the National Natural Science Foundation of China (60272079).
文摘The simplified joint channel estimation and symbol detection based on the EM (expectation-maximization) algorithm for space-time block code (STBC) are proposed. By assuming channel to be invariant within only one STBC word and utilizing the orthogonal structure of STBC, the computational complexity and cost of this algorithm are both very low, so it is very suitable to implementation in real systems.
基金This project was supported by the National Science Foundation of China (60496314)
文摘Space-time coding is an important technique that can improve transmission performance at fading environments in mobile communication systems. In this paper, we propose a novel diversity scheme using spread spacetime block coding (SSTBC) in multiple antenna systems. At the transmitter, the primitive data are serial to parallel converted to multiple data streams, and each stream is rotated in constellation. Then Walsh codes are used to spread each symbol to all antenna space in a space-time block. The signals received from all receiver antennas are combined with the maximum ratio combining (MRC), equalized with linear equalizer to eliminate the inter-code interference and finally demodulated to recover to transmit data by using the one-symbol maximum likelihood detector. The proposed scheme does not sacrifice the spectrum efficiency meanwhile maintains the transceiver with low complexity. Owing to the transmission symbols of different transmit antennas passing through all the spatial subchannels between transceiver antenna pairs, the system obtains the partial additional space diversity gain of all spatial paths. It is also shown that the diversity gain is better than the previous space-time block coding (STBC) schemes with full transmission rate.
基金supported by the National Key Research and Development Program of China(2016YFE0200400)the Key R&D Program of Shaanxi Province(2017KW-ZD-12)+1 种基金the Postdoctoral Science Foundation of Shaanxi Provincethe Nature Science Foundation of Shaanxi Province
文摘Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit element increases.A subarray-based space-time coding(sub-STC)radar is explored to alleviate the range resolution reduction.For the proposed radar configuration,an identical waveform is transmitted and it introduces a small time offset in different subarrays.The multidimensional ambiguity function of sub-STC radar is defined by considering resolutions in multiple domains including the range,Doppler,angle and probing direction.Analyses on properties of the multi-dimensional ambiguity function of the sub-STC radar with regard to the spatial coverage,resolution performance and low sidelobes are also given.Results reveal that the range resolution and low sidelobes performance are improved with the proposed approach.
基金supported by the State Key Laboratory for Mobile Communication Open Foundation(N200502)the Natural Science Foundation of Jiangsu Province(BK2007192).
文摘An improved scheme with cooperative diversity based on distributed space-time block coding (WCD- DSTBC) is proposed, which effectively achieves diversity gains and improves the performance of the system by sharing some single-antenna users' antennas to form a virtual antenna array and combining with distributed spacetime block coding (DSTBC) mode. Then the relation between the system BER and the interuser BER for WCDDSTBC scheme is theoretically derived and the closed-form expression of BER for WCD-DSTBC system is obtained. The simulation results show that the proposed WCD-DSTBC scheme achieves distinct gains over the non-cooperative multi-carrier CDMA (MC-CDMA) system. When system BER is le-3 and interuser BER is le-3, about 2.5 dB gain can be gotten. When interuser channel state information (CSI) outgoes the users' individual CSI, about 3 dB gain is also achieved.
基金supported by the Open Research Fund of National Mobile Communications Research Laboratory of Southeast University(N200904)the Nanjing University of Aeronautics and Astronautics (NUAA) Research Funding (NS2010113)the National Natural Science Foundation of China (61172077)
文摘Two optimal power control (PC) schemes under the power constraint for space-time coded multiple input multiple output systems over the flat Rayleigh fading channel with the imperfect channel state information (CSI) are presented. One is based on the minimization of a bit error rate (BER), and the other is based on the maximization of a fuzzy signal-to-noise ratio. In these schemes, different powers are allocated to individual transmit an- tennas rather than equal power in the conventional one. For the first scheme, the optimal PC procedure is developed. It is shown that the Lagrange multiplier for the constrained optimization in the power control does exist and is unique. A practical iterative algorithm based on Newton's method for finding the Lagrange multiplier is proposed. In the second scheme, some existing schemes are included, and a suboptimal PC procedure is developed by means of the asymptotic performance analysis. With this suboptimal scheme, a simple PC calculation formula is provided, and thus the calculation of the PC will be straightforward. Moreover, the suboptimal scheme has the BER performance close to the optimal scheme. Simulation results show that the two PC schemes can provide BER lower than the equal PC and antenna selection scheme under the imperfect CSI.
文摘在协同中继系统中,应用分布式空时码(Distributed Space Time Coding,DSTC),可以在有效提高系统效率的同时获得全协同分集。但是,各中继节点的异步传输和节点间的多径衰落会破坏空时码字的结构,使之不能获得全分集。本文针对两中继的异步协同系统,提出了一种频率选择性信道下的基于线性预处理的DSTC传输结构。在此传输结构中,源节点对发送数据块进行预处理后发送给中继节点,中继节点对接收信号进行简单的共轭重排等处理,使得在目的节点形成DSTC的结构。其中,为抵抗异步传输和多径衰落引入的符号间干扰(Inter-symbol Interference,ISI),在源节点处和中继节点处均加入循环前缀(Cyclic Prefix,CP)。于是目的节点对接收到的信号进行DFT处理后,可以运用ML算法对数据信息进行检测。理论分析和仿真表明,当存在定时误差和节点间为频率选择性信道时,目的节点运用ML检测算法该传输结构可获得全空间分集和全多径分集。然后,本文考虑了信道各径延迟为整数倍符号周期的情况,并且证明了该传输结构的分集增益只与节点间信道的有效信道长度有关。