The organic-rich mudstones and dolostones of the Permian Fengcheng Formation(Fm.)are typically alkaline lacustrine source rocks,which are typified by impressively abundantβ-carotane.Abundant β-carotane has been well...The organic-rich mudstones and dolostones of the Permian Fengcheng Formation(Fm.)are typically alkaline lacustrine source rocks,which are typified by impressively abundantβ-carotane.Abundant β-carotane has been well acknowledged as an effective indicator of biological sources or depositional environments.However,the specific biological sources of β-carotane and the coupling control of biological sources and environmental factors on the enrichment of β-carotane in the Fengcheng Fm.remains obscure.Based on a comprehensive investigation of the bulk,molecular geochemistry,and organic petrology of sedimentary rocks and the biochemistry of phytoplankton in modern alkaline lakes,we proposed a new understanding of the biological precursors of β-carotane and elucidated the enrichment mechanism of β-carotane in the Fengcheng Fm.The results show that the biological precursors crucially control the enrichment of β-carotane in the Fengcheng Fm.The haloalkaliphilic cyanobacteria are the primary biological sources of β-carotane,which is suggested by a good positive correlation between the 2-methylhopane index,7-+8-methyl heptadecanes/C_(max),C_(29%),and β-carotane/C_(max)in sedimentary rocks and the predominance of cyanobacteria with abundantβ-carotene in modern alkaline lakes.The enrichment of β-carotane requires the reducing condition,and the paleoredox state that affects the enrichment of β-carotane appears to have a threshold.The paleoclimate conditions do not considerably impact the enrichment of β-carotane,but they have some influence on the water's paleosalinity by affecting evaporation and precipitation.While it does not directly affect the enrichment of β-carotane in the Fengcheng Fm.,paleosalinity does have an impact on the cyanobacterial precursor supply and the preservation conditions.展开更多
Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organ...Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organic carbon(TOC)content,various kerogen types,and a wide range of thermal maturity.Consequently,their hydrocarbon generation potential and resource estimation can be misinterpreted.In this study,geochemical tests,numerical analysis,hydrocarbon generation kinetics,and basin modeling were integrated to investigate the differential effects of kerogen types on the hydrocarbon generation potential of lacustrine source rocks.Optimized hydrocarbon generation and expulsion(HGE)models of different kerogen types were established quantitatively upon abundant Rock-Eval/TOC/vitrinite reflectance(R_(o))datasets.Three sets of good-excellent source rocks deposited in the fourth(Es4),third(Es3),and first(Es1)members of Paleogene Shahejie Formation,are predominantly types I-II_(1),II_(1)-II_(2),and II-III,respectively.The activation energy of types I-II_(2)kerogen is concentrated(180-230 kcal/mol),whereas that of type III kerogen is widely distributed(150-280 kcal/mol).The original hydrocarbon generation potentials of types I,II_(1),II_(2),and III kerogens are 790,510,270,and 85 mg/g TOC,respectively.The Ro values of the hydrocarbon generation threshold for type I-III source rocks gradually increase from 0.42%to 0.74%,and Ro values of the hydrocarbon expulsion threshold increase from 0.49%to 0.87%.Types I and II_(1)source rocks are characterized by earlier hydrocarbon generation,more rapid hydrocarbon expulsion,and narrower hydrocarbon generation windows than types II_(2)and III source rocks.The kerogen types also affect the HGE history and resource potential.Three types(conventional,tight,and shale oil/gas)and three levels(realistic,expected,and prospective)of hydrocarbon resources of different members in the Liaohe Western Depression are evaluated.Findings suggest that the Es3 member has considerable conventional and unconventional hydrocarbon resources.This study can quantitatively characterize the hydrocarbon generation potential of source rocks with different kerogen types,and facilitate a quick and accurate assessment of hydrocarbon resources,providing strategies for future oil and gas exploration.展开更多
The black shale of the Mesoproterozoic Cuizhuang Formation in the Changcheng System in Yongji city,North China Craton,is a potential source rock.Understanding the organic matter enrichment mechanism is crucial for eva...The black shale of the Mesoproterozoic Cuizhuang Formation in the Changcheng System in Yongji city,North China Craton,is a potential source rock.Understanding the organic matter enrichment mechanism is crucial for evaluating source rock resources and understanding oil and gas accumulation mechanisms.In this study,we evaluated the sedimentary paleoenvironment and organic matter enrichment mechanisms of shale using thin section observations,mineral composition analysis,organic geochemistry,and elemental geochemistry.We found significant differences in the sedimentary paleoenvironment and organic matter enrichment mechanisms between the lower Cuizhuang Formation and the Beidajian Formation shale.The Cuizhuang Formation was deposited in a late-stage,restricted basin environment during the rift phase,and elemental and geochemical indicators showed that the Cuizhuang Formation was in a suboxic-anoxic water environment,that was influenced by a warm and humid paleoclimate and submarine hydrothermal activities,which promoted the accumulation of organic matter.However,the enrichment of organic matter in the Cuizhuang Formation was mainly controlled by redox conditions.The formation of suboxic-anoxic water environments may be closely related to the warm and humid paleoclimate and submarine hydrothermal activities.Warm conditions promote continental weathering and increase marine productivity,thereby consuming oxygen in the bottom water.Moreover,acidic hydrothermal activity also helps to establish an anoxic environment.Our results reveal the effects controlling various coupled mechanisms dominated by redox conditions,which may explain the development of source rocks in the Cuizhuang Formation.展开更多
Coal is a solid combustible mineral,and coal-bearing strata have important hydrocarbon generation potential and contribute to more than 12%of the global hydrocarbon resources.However,the deposition and hydrocarbon evo...Coal is a solid combustible mineral,and coal-bearing strata have important hydrocarbon generation potential and contribute to more than 12%of the global hydrocarbon resources.However,the deposition and hydrocarbon evolution process of ancient coal-bearing strata is characterized by multiple geological times,leading to obvious distinctions in their hydrocarbon generation potential,geological processes,and production,which affect the evaluation and exploration of hydrocarbon resources derived from coaly source rocks worldwide.This study aimed to identify the differences on oil-generated parent macerals and the production of oil generated from different coaly source rocks and through different oil generation processes.Integrating with the analysis of previous tectonic burial history and hydrocarbon generation history,high-temperature and high-pressure thermal simulation experiments,organic geochemistry,and organic petrology were performed on the Carboniferous-Permian(C-P)coaly source rocks in the Huanghua Depression,Bohai Bay Basin.The oil-generated parent macerals of coal's secondary oil generation process(SOGP)were mainly hydrogen-rich collotelinite,collodetrinite,sporinite,and cutinite,while the oil-generated parent macerals of tertiary oil generation process(TOGP)were the remaining small amount of hydrogen-rich collotelinite,sporinite,and cutinite,as well as dispersed soluble organic matter and unexhausted residual hydrocarbons.Compared with coal,the oil-generated parent macerals of coaly shale SOGP were mostly sporinite and cutinite.And part of hydrogen-poor vitrinite,lacking hydrocarbon-rich macerals,and macerals of the TOGP,in addition to some remaining cutinite and a small amount of crude oil and bitumen from SOGP contributed to the oil yield.The results indicated that the changes in oil yield had a good junction between SOGP and TOGP,both coal and coaly shale had higher SOGP aborted oil yield than TOGP starting yield,and coaly shale TOGP peak oil yield was lower than SOGP peak oil yield.There were significant differences in saturated hydrocarbon and aromatic parameters in coal and coaly shale.Coal SOGP was characterized by a lower Ts/Tm and C31-homohopane22S/(22S+22R)and a higher Pr/n C17compared to coal TOGP,while the aromatic parameter methyl dibenzothiophene ratio(MDR)exhibited coaly shale TOGP was higher than coaly shale SOGP than coaly TOGP than coaly SOGP,and coal trimethylnaphthalene ratio(TNR)was lower than coaly shale TNR.Thus,we established oil generation processes and discriminative plates.In this way,we distinguished the differences between oil generation parent maceral,oil generation time,and oil production of coaly source rocks,and therefore,we provided important support for the evaluation,prediction,and exploration of oil resources from global ancient coaly source rocks.展开更多
The Jurassic coal-measure source rocks in the Junggar Basin have drawn considerable attention in recent years. In our hydrocarbon thermal simulation experiments of these rocks, we found that the dark mudstone evaluate...The Jurassic coal-measure source rocks in the Junggar Basin have drawn considerable attention in recent years. In our hydrocarbon thermal simulation experiments of these rocks, we found that the dark mudstone evaluated as good source rock, had a much lower hydrocarbon generation capacity than the coal and carbonaceous mudstone, evaluated as poor source rock. Based on this background, we performed Fourier transform infrared spectroscopy(FTIR) and combined the results of semi-open thermal simulation experiments to explore the association between the molecular structure and hydrocarbon production capacity, with the aim of obtaining a new understanding of hydrocarbon potential of Jurassic coal-measure source rocks from the perspective of molecular structure. The results indicate that coals exhibit lower condensation of aromatic structures and higher relative abundance of aliphatic structures with a higher degree of branched chaining than mudstones and carbonaceous mudstones. Apparent aromaticity(f_a), aromatic abundance parameter I, and degree of condensation(DOC) are negatively correlated with organic matter abundance. The aliphatic structural parameter H demonstrates a substantial positive correlation with organic matter abundance. Furthermore, aliphatic relative abundance factor A is associated with the type of organic matter;the better is the type of the organic matter, the larger is the A value. The combination of the molecular structures with the thermal simulation results shows that the aliphatic hydrogen enrichment of selected carbonaceous mudstone is similar to that of coal. However, the relative abundance of the aliphatic group of it is high, and the DOC of the aromatic structure is low, making the hydrocarbon generation base stronger and easier to crack. Thus, the hydrocarbon generation capacity of carbonaceous mudstone is slightly higher than that of coal. Mudstone has low H and I values, and the DOC is high, indicating that its hydrocarbon base is low, so it has low hydrocarbon generation capacity. Therefore, the molecular structure is closely associated with the hydrocarbon potential of coal-measure source rocks. When evaluating the qualities of coal-measure source rocks, the influence of molecular structure on these rocks should be considered.展开更多
Due to limited data on the geochemical properties of natural gas,estimations are needed for the effective gas source rock in evaluating gas potential.However,the pronounced heterogeneity of mudstones in lacustrine suc...Due to limited data on the geochemical properties of natural gas,estimations are needed for the effective gas source rock in evaluating gas potential.However,the pronounced heterogeneity of mudstones in lacustrine successions complicates the prediction of the presence and geochemical characteristics of gas source rocks.In this paper,the Liaohe Subbasin of Northeast China is used as an example to construct a practical methodology for locating effective gas source rocks in typical lacustrine basins.Three types of gas source rocks,microbial,oil-type,and coal-type,were distinguished according to the different genetic types of their natural gas.A practical three-dimensional geological model was developed,refined,and applied to determine the spatial distribution of the mudstones in the Western Depression of the Liaohe Subbasin and to describe the geochemical characteristics(the abundance,type,and maturation levels of the organic matter).Application of the model in the subbasin indicates that the sedimentary facies have led to heterogeneity in the mudstones,particularly with respect to organic matter types.The effective gas source rock model constructed for the Western Depression shows that the upper sequence(SQ2)of the Fourth member(Mbr 4)of the Eocene Shahejie Formation(Fm)and the lower and middle sequences(SQ3 and SQ4)of the Third member(Mbr 3)form the principal gas-generating interval.The total volume of effective gas source rocks is estimated to be 586 km^(3).The effective microbial,oil-type,and coal-type gas source rocks are primarily found in the shallow western slope,the central sags,and the eastern slope of the Western Depression,respectively.This study provides a practical approach for more accurately identifying the occurrence and geochemical characteristics of effective natural gas source rocks,enabling a precise quantitative estimation of natural gas reserves.展开更多
The Bohai Bay Basin,as a super oil-rich basin in the world,is characterized by cyclic evolution and complex regional tectonic stress field,and its lifecycle tectonic evolution controls the formation of regional source...The Bohai Bay Basin,as a super oil-rich basin in the world,is characterized by cyclic evolution and complex regional tectonic stress field,and its lifecycle tectonic evolution controls the formation of regional source rocks.The main pre-Cenozoic stratigraphic system and lithological distribution are determined through geological mapping,and the dynamics of the pre-Cenozoic geotectonic evolution of the Bohai Bay Basin are investigated systematically using the newly acquired high-quality seismic data and the latest exploration results in the study area.The North China Craton where the Bohai Bay Basin is located in rests at the intersection of three tectonic domains:the Paleo-Asian Ocean,the Tethys Ocean,and the Pacific Ocean.It has experienced the alternation and superposition of tectonic cycles of different periods,directions and natures,and experienced five stages of the tectonic evolution and sedimentary building,i.e.Middle–Late Proterozoic continental rift trough,Early Paleozoic marginal-craton depression carbonate building,Late Paleozoic marine–continental transitional intracraton depression,Mesozoic intracontinental strike-slip–extensional tectonics,and Cenozoic intracontinental rifting.The cyclic evolution of the basin,especially the multi-stage compression,strike-slip and extensional tectonics processes in the Hercynian,Indosinian,Yanshan and Himalayan since the Late Paleozoic,controlled the development,reconstruction and preservation of several sets of high-quality source rocks,represented by the Late Paleozoic Carboniferous–Permian coal-measure source rocks and the Paleogene world-class extra-high-quality lacustrine source rocks,which provided an important guarantee for the hydrocarbon accumulation in the super oil-rich basin.展开更多
By conducting organic geochemical analysis of the samples taken from the drilled wells in Baiyun Sag of Pearl River Mouth Basin,China,the development characteristics of hydrocarbon source rocks in the sag are clarifie...By conducting organic geochemical analysis of the samples taken from the drilled wells in Baiyun Sag of Pearl River Mouth Basin,China,the development characteristics of hydrocarbon source rocks in the sag are clarified.Reconstruct the current geothermal field of the sag and restore the tectonic-thermal evolution process to predict the type,scale,and distribution of resources in Baiyun Sag through thermal pressure simulation experiments and numerical simulation.The Baiyun Sag is characterized by the development of Paleogene shallow lacustrine source rocks,which are deposited in a slightly oxidizing environment.The source rocks are mainly composed of terrestrial higher plants,with algae making a certain contribution,and are oil and gas source rocks.Current geothermal field of the sag was reconstructed,in which the range of geothermal gradients is(3.5–5.2)℃/100 m,showing an overall increasing trend from northwest to southeast,with significant differences in geothermal gradients across different sub-sags.Baiyun Sag has undergone two distinct periods of extensional process,the Eocene and Miocene,since the Cenozoic era.These two periods of heating and warming events have been identified,accelerating the maturation and evolution of source rocks.The main body of ancient basal heat flow value reached its highest at 13.82 Ma.The basin modelling results show that the maturity of source rocks is significantly higher in Baiyun main sub-sag than that in other sub-sags.The Eocene Wenchang Formation is currently in the stage of high maturity to over maturity,while the Eocene Enping Formation has reached the stage of maturity to high maturity.The rock thermal simulation experiment shows that the shallow lacustrine mudstone of the Wenchang Formation has a good potential of generating gas from kerogen cracking with high gas yield and long period of gas window.Shallow lacustrine mudstone of the Enping Formation has a good ability to generate light oil,and has ability to generate kerogen cracking gas in the late stage.The gas yield of shallow lacustrine mudstone of the Enping Formation is less than that of shallow lacustrine mudstone of the Wenchang Formation and the delta coal-bearing mudstone of the Enping Formation.The numerical simulation results indicate that the source rocks of Baiyun main sub-sag generate hydrocarbons earlier and have significantly higher hydrocarbon generation intensity than other sub-sags,with an average of about 1200×10^(4)t/km^(2).Oil and gas resources were mainly distributed in Baiyun main sub-sag and the main source rocks are distributed in the 3^(rd)and 4^(th)members of Wenchang Formation.Four favorable zones are selected for the division and evaluation of migration and aggregation units:No.(1)Panyu 30 nose-shaped structural belt,No.(3)Liuhua 29 nose-shaped uplift belt and Liwan 3 nose-shaped uplift belt,No.(2)gentle slope belt of Baiyun east sag,and No.(8)Baiyun 1 low-uplift.展开更多
Coals developed in the Oligocene Yacheng and Lingshui formations in the Qiongdongnan Basin have high organic matter abundance, and the dark mudstones in the two formations have reached a good source rock standard but ...Coals developed in the Oligocene Yacheng and Lingshui formations in the Qiongdongnan Basin have high organic matter abundance, and the dark mudstones in the two formations have reached a good source rock standard but with strong heterogeneity. Through the analysis of trace elements, organic macerals and biomarkers, it is indicated that plankton has made little contribution to Oligocene source rocks compared with the terrestrial higher plants. The organic matter preservation depends on hydrodynamics and the redox environment, and the former is the major factor in the study area. During the sedimentary period of the Yacheng Formation, tidal flats were developed in the central uplift zone, where the hydrodynamic conditions were weak and the input of terrestrial organic matter was abundant. So the Yacheng Salient of the central uplift zone is the most favorable area for the development of source rocks, followed by the central depression zone. During the sedimentary period of the Lingshui Formation, the organic matter input was sufficient in the central depression zone due to multiple sources of sediments. The semi-enclosed environment was favorable for organic matter accumulation, so high quality source rocks could be easily formed in this area, followed by the Yacheng salient of central uplift zone. Source rocks were less developed in the northern depression zone owing to poor preservation conditions,展开更多
Hydrocarbon expulsion features and resource potential evaluation of source rocks are crucial for the petroleum exploration.High-maturity marine source rocks have not exhibited a hydrocarbon expulsion mode owing to the...Hydrocarbon expulsion features and resource potential evaluation of source rocks are crucial for the petroleum exploration.High-maturity marine source rocks have not exhibited a hydrocarbon expulsion mode owing to the lack of low-maturity source rocks in deep petroliferous basins.We considered the Ediacaran microbial dolomite in the Sichuan Basin,the largest high-maturity marine gas layer in China,to exhibit a method that quantitatively characterizes the hydrocarbon expulsion of high-maturity marine source rocks.The experiment of fluid inclusion,rock pyrolysis,and vitrinite reflectance(Ro)of 119 microbial dolomite core samples obtained from the Dengying Formation were performed.A hydrocarbon expulsion model of high-maturity source rock was established,and its resource potential was evaluated.The results showed that the Ediacaran microbial dolomite in the Sichuan Basin is a good source rock showing vast resource potential.The hydrocarbon expulsion threshold is determined to be vitrinite reflectance at 0.92%.The hydrocarbon expulsion intensities in the geologic history is high with maximum of 1.6×10^(7)t/km^(2).The Ediacaran microbial dolomite expelled approximately 1.008×10^(12)t of hydrocarbons,and the recoverable resource was 1.5×10^(12)m^(3).The region can be categorized into areasⅠ,Ⅱ,Ⅲ,andⅣ,in decreasing order of hydrocarbon expulsion intensity.Areas with a higher hydrocarbon expulsion intensity have a lower drilling risk and should be prioritized for exploration in the orderⅠ>Ⅱ>Ⅲ>Ⅳ.Two areas,northern and central parts of Ediacaran in the Sichuan Basin,were selected as prospects which had the drilling priority in the future gas exploration.The production data of 55 drilled wells verified the high reliability of this method.This model in this study does not require low-maturity samples and can be used for evaluating high-maturity marine source rocks,which has broad applicability in deep basins worldwide.展开更多
The theory of "source rock control" has evolved from source-rock-control hydrocarbon accumulation, to effective source-rock-control hydrocarbon accumulation, and to high-quality source- rock-control hydrocarbon accu...The theory of "source rock control" has evolved from source-rock-control hydrocarbon accumulation, to effective source-rock-control hydrocarbon accumulation, and to high-quality source- rock-control hydrocarbon accumulation. However, there are problems, such as whether high-quality source rocks exist or not? What high-quality source rocks are, and how to identify them, are yet to be agreed upon. Aimed at this issue of concern to explorationists, and taking the Beier Sag in the Hailaer Basin as an example, this paper defines the high-quality source rocks and the lower limit for evaluation of high-quality source rocks, by using the inflection point on the relationship curve of hydrocarbon (oil) expulsion, which is calculated by the material balance principle, versus total organic carbon (TOC). The results show that when TOC is low, all source rocks have limited hydrocarbon expulsion and slow growth rate, thus they cannot be high-quality source rocks. However, when TOC rises to some threshold, hydrocarbon expulsion increases significantly with TOC. This inflection point should be the lower limit of high-quality source rocks: those with TOC greater than the inflection-point value are high-quality source rocks. In addition, the lower limit of high-quality source rocks is also related to the type and maturity of organic matters in the source rocks, as well as the mineral components of the source rocks affecting the residual hydrocarbons. Theoretically, the lower limit of high-quality source rocks depends on geological conditions rather than being a constant value. However, for the sake of simplicity and practicability, in this paper TOC=2.0% is regarded as the lower limit of high-quality source rocks. The examination of such standard in the work area indicates that the high-quality source rocks in members K^n2 and K^n~ of the Nantun formation contribute 76% and 82% to oil generation, and 96% and 91% to oil expulsion, respectively. The distribution of high-quality source rocks is also closely related to the distribution of hydrocarbon reservoirs in the region, demonstrating that high-quality source rocks control hydrocarbon accumulation.展开更多
Natural gas and condensate derived from Carboniferous-Permian(C-P)coaly source rocks discovered in the Dagang Oilfield in the Bohai Bay Basin(east China)have important implications for the potential exploration of C-P...Natural gas and condensate derived from Carboniferous-Permian(C-P)coaly source rocks discovered in the Dagang Oilfield in the Bohai Bay Basin(east China)have important implications for the potential exploration of C-P coaly source rocks.This study analyzed the secondary,tertiary,and dynamic characteristics of hydrocarbon generation in order to predict the hydrocarbon potentials of different exploration areas in the Dagang Oilfield.The results indicated that C-P oil and gas were generated from coaly source rocks by secondary or tertiary hydrocarbon generation and characterized by notably different hydrocarbon products and generation dynamics.Secondary hydrocarbon generation was completed when the maturity reached vitrinite reflectance(Ro)of 0.7%-0.9%before uplift prior to the Eocene.Tertiary hydrocarbon generation from the source rocks was limited in deep buried sags in the Oligocene,where the products consisted of light oil and gas.The activation energies for secondary and tertiary hydrocarbon generation were 260-280 kJ/mol and 300-330 kJ/mol,respectively,indicating that each instance of hydrocarbon generation required higher temperature or deeper burial than the previous instance.Locations with secondary or tertiary hydrocarbon generation from C-P coaly source rocks were interpreted as potential oil and gas exploration regions.展开更多
Hydrocarbon resources in the Qiongdongnan Basin have become an important exploration target in China.However,the development of high-quality source rocks in this basin,especially in its deep-water areas,are still not ...Hydrocarbon resources in the Qiongdongnan Basin have become an important exploration target in China.However,the development of high-quality source rocks in this basin,especially in its deep-water areas,are still not fully understood.In this study,evolutions of sedimentary facies and palaeoenvironment and their influences on the development of source rocks in diverse tectonic regions of the Qiongdongnan Basin were investigated.The results show that during the Oligocene and to Miocene periods,the sedimentary environment of this basin progressively varied from a semi-closed gulf to an open marine environment,which resulted in significant differences in palaeoenvironmental conditions of the water column for various tectonic regions of the basin.In shallow-water areas,the palaeoproductivity and reducibility successively decrease,and the hydrodynamic intensity gradually increases for the water columns of the Yacheng,Lingshui,and Sanya-Meishan strata.In deep-water areas,the water column of the Yacheng and Lingshui strata has a higher palaeoproductivity and a weaker hydrodynamic intensity than that of the Sanya-Meishan strata,while the reducibility gradually increases for the water columns of the Yacheng,Lingshui,and Sanya-Meishan strata.In general,the palaeoenvironmental conditions of the water column are the most favorable to the development of the Yacheng organic-rich source rocks.Meanwhile,the Miocene marine source rocks in the deep-water areas of the Qiongdongnan Basin may also have a certain hydrocarbon potential.The differences in the development models of source rocks in various tectonic regions of continental margin basins should be fully evaluated in the exploration and development of hydrocarbons.展开更多
The organic geochemistry and petrology of source rocks determine the hydrocarbon generation potential of the Banqiao Sag. In this study, organic geochemistry and petrology were used to determine the abundance of organ...The organic geochemistry and petrology of source rocks determine the hydrocarbon generation potential of the Banqiao Sag. In this study, organic geochemistry and petrology were used to determine the abundance of organic matter(OM), OM type, OM maturity, and sedimentary environments of the source rocks, collected from Cenozoic Shahejie Formation, Banqiao Sag, Bohai Bay Basin, China. Vitrinite and liptinite are the main maceral composition of the source rocks, and range from 18% to 81% and from 2% to82% on a mineral matter free(MMF) basis, respectively. The values of vitrinite reflectance(Ro)(0.36%-1.20%) and the Tmaxvalues(397-486.C) show that the thermal maturity range from low mature to peak-maturity. The abundance of OM varies between 0.22% and 4.37%, suggesting that the source rocks of the Shahejie(Es) Formation are mainly fair to good source rocks. The Rock-Eval pyrolysis results show that the source rocks have good petroleum generation potential. The amount of free hydrocarbons(S_1)and hydrocarbons generated from pyrolysis(S_(2)) range within 0.01-3.70 mg/g, and 0.04-29.17 mg/g. The hydrogen index(HI) varies between 18.18 and 741.13 mg HC/g TOC, with most of the samples appearing to be mainly Type II kerogen, and thereby exhibiting the ability to generate both oil and gas. The ratios of Pr/Ph, the cross plot of Pr/nC_(17)-Ph/nC_(18), the cross plot of C_(29)/C_(27)-Pr/Ph, and ternary of dibenzothiophene, dibenzofuran, and fluorene, indicate that the Shahejie Formation deposited in suboxic and weak reducing environments. The main biological source is from advanced plants. The maceral composition and rock pyrolysis data indicate the kerogen type is a humic type or mixed sapropelic-humic type. The source rocks of the Shahejie(Es) Formation occur in the oil window, and the abundant organic richness,humic kerogen demonstrate that these rocks are effective oil and gas source rocks. The mudstone rocks in the Shahejie Formation are the main source of oil and gas and represent the main exploration target for the Banqiao Sag. This study enhances the great prospect of oil and gas production in the Banqiao Sag.展开更多
According to the study on the oil-gas source rocks in China for ten years,in connection with the microscopic, submicroscopic levels, the authors used the microscope photometry together with transmission electronic mic...According to the study on the oil-gas source rocks in China for ten years,in connection with the microscopic, submicroscopic levels, the authors used the microscope photometry together with transmission electronic microscopy, scanning electronic microscopy and proposed a new classification for sedimentary organic matters.展开更多
The influence of water on gas generation from humic type organic matter at highly to over mature stage was investigated with thermal simulation experiments at high temperature and pressure.The result of the experiment...The influence of water on gas generation from humic type organic matter at highly to over mature stage was investigated with thermal simulation experiments at high temperature and pressure.The result of the experiments indicates that the effect of water on gas generation was controlled by the thermal maturity of organic matter.Water could enhance gas generation and increase hydrocarbon gas yields significantly at over mature stage of humic type organic matter.Hydrogen isotopic compositions of coal-derived gases generated at highly to over mature stage were mainly controlled by thermal maturity of source rocks,but also affected by formation water.Highly and over mature coal measure source rocks are widely distributed in China.The hydrocarbon gas generation capacity of coal measure source rocks and resource potential of coal-derived gases in deep formations would be significantly enhanced assuming that formation water could be involved in the thermal cracking of highly to over mature organic matter in real geological settings.展开更多
The Cretaceous is one of the most important stratigraphic intervals for hydrocarbon source rocks. This article summarizes the distribution, formation, and development characteristics of Cretaceous source rocks and ass...The Cretaceous is one of the most important stratigraphic intervals for hydrocarbon source rocks. This article summarizes the distribution, formation, and development characteristics of Cretaceous source rocks and associated oil and gas resources in the world and China, aiming at improving the understanding of this hydrocarbon enrichment and at broadening domestic exploration. Outside China, these rocks are generally formed in marine or transgressive environments during both the Upper and Lower Cretaceous. The majority of Cretaceous source rocks are located in the Persian Gulf, Mediterranean, and Gulf Coast of the USA. Kerogen types within these source rocks have distinct spatial distribution characteristics, with high-latitude Boreal Realm, Tethyan Realm and South Gondwana Realm source rocks containing type III, II, II-III kerogens, respectively. Cretaceous source rocks in China can be mainly divided into four zones: Eastern, Central, Northwest, and Qinghai-Tibet Plateau zones. The majority of Chinese source rocks formed in the Early Cretaceous, whereas the most productive source rocks are developed in the Upper Cretaceous, such as those within the Songliao Basin. Most of these basins are formed in lacustrine environments, although some may have been influenced by transgressive events: Cretaceous source rocks are formed in four distinctive ways: 1) during Oceanic Anoxic Events and associated global sea-level rises, 2) in Black Sea-type retention basins, 3) during transgression and 4) during periods of significant terrestrial input. Formation of these source rocks is controlled by four factors: paleoclimate, paleotopography, transgression, and Oceanic Anoxic Events. These four major controlling factors indicate that China's hydrocarbon exploration within the Cretaceous should focus on two key areas with extremely low exploration levels, the Qinghai-Tibet Plateau and the southeastern coast of China.展开更多
Research on effective source rocks directly affects the accuracy of identifying hydrocarbon resources, and indirectly affects the exploration decisions in petroliferous basins. Although the previous evaluation methods...Research on effective source rocks directly affects the accuracy of identifying hydrocarbon resources, and indirectly affects the exploration decisions in petroliferous basins. Although the previous evaluation methods of effective source rocks vary relatively widely, a complete quantitative evaluation approach has not yet been developed. For that reason, we redefined the concept of effective source rocks based on the existing research results. Surrounding this definition, and guided by the hydrocarbon expulsion theory, the quantitative model called "two stages and three steps" method is established to predict effective source rocks. Its application in the Bozhong Depression indicates that among the four sets source rocks in the Bozhong Depression, the Member 3 of the Shahejie Formation (Es 3 ) has the largest effective source rock thickness, and the Member 1 Member 2 of the Shahejie Formation (Es 1+2 ) is the second largest .The effective part of dark mudstone is only 30%-80% of the total volume and with the increase of buried depth and improvement of quality, the effective part increases. Comprehensive analysis indicates that the "two stages and three steps" method is a practical technique for effective source rock prediction.展开更多
Hydrocarbon expulsion occurs only when pore fluid pressure due to hydrocarbon generation in source rock exceeds the force against migration in the adjacent carrier beds.Taking the Middle-Upper Ordovician carbonate sou...Hydrocarbon expulsion occurs only when pore fluid pressure due to hydrocarbon generation in source rock exceeds the force against migration in the adjacent carrier beds.Taking the Middle-Upper Ordovician carbonate source rock of Tarim Basin in China as an example,this paper proposes a method that identifies effective carbonate source rock based on the principles of mass balance.Data from the Well YW2 indicate that the Middle Ordovician Yijianfang Formation contains effective carbonate source rocks with low present-day TOC.Geological and geochemical analysis suggests that the hydrocarbons in the carbonate interval are likely self-generated and retained.Regular steranes from GC-MS analysis of oil extracts in this interval display similar features to those of the crude oil samples in Tabei area,indicating that the crude oil probably was migrated from the effective source rocks.By applying to other wells in the basin,the identified effective carbonate source rocks and non-source rock carbonates can be effectively identified and consistent with the actual exploration results,validating the method.Considering the contribution from the identified effective source rocks with low present-day TOC(TOC_(pd))is considered,the long-standing puzzle between the proved 3 P oil reserves and estimated resources in the basin can be reasonably explained.展开更多
The molecular composition and biomarker distribution of various occurrences of organic matter in argillaceous source rocks developed in fresh and saline lacustrine environments were revealed by successive treatments o...The molecular composition and biomarker distribution of various occurrences of organic matter in argillaceous source rocks developed in fresh and saline lacustrine environments were revealed by successive treatments of solvent extraction followed by acid hydrolysis using gas chromatography–mass spectrometry. The free fraction obtained by solvent extraction provided abundant geochemical information concerning the sedimentary environment, thermal maturity and biogenic origin, and obvious differences existed between fresh and saline lacustrine source rock samples. Our research results indicate that the carbonate-mineral-bound(CM-bound) fraction released by successive acid hydrolysis could also serve as a significant biogenic indicator, as the bicyclic sesquiterpenoids, indicative of Botryococcus braunii origin, were specifically detected in quite high abundance in the acid-soluble fraction. In addition, the light end hydrocarbons were much better preserved in the acid-soluble fraction, and elemental sulfur was only detected in the CM-bound fraction, suggesting a relatively confined environment for the CM-bound fraction, which thus could preserve additional geochemical information compared to that of the free fraction. The CM-bound fraction also exhibited discernable differences between fresh and saline lacustrine samples. Therefore, it can be concluded that comprehensive analysis of free and CM-bound fractions in the argillaceous source rocks can provide a more authentic and objective interpretation of geologic conditions.展开更多
基金financial support from the National Key Research and Development Program of China(2019YFC0605502)the National Natural Science Foundation of China(42302156)+1 种基金the Major Projects of Petro China Science and Technology Fund(2021DJ0206)the Natural Science Foundation of China University of Petroleum(22CX06046A)。
文摘The organic-rich mudstones and dolostones of the Permian Fengcheng Formation(Fm.)are typically alkaline lacustrine source rocks,which are typified by impressively abundantβ-carotane.Abundant β-carotane has been well acknowledged as an effective indicator of biological sources or depositional environments.However,the specific biological sources of β-carotane and the coupling control of biological sources and environmental factors on the enrichment of β-carotane in the Fengcheng Fm.remains obscure.Based on a comprehensive investigation of the bulk,molecular geochemistry,and organic petrology of sedimentary rocks and the biochemistry of phytoplankton in modern alkaline lakes,we proposed a new understanding of the biological precursors of β-carotane and elucidated the enrichment mechanism of β-carotane in the Fengcheng Fm.The results show that the biological precursors crucially control the enrichment of β-carotane in the Fengcheng Fm.The haloalkaliphilic cyanobacteria are the primary biological sources of β-carotane,which is suggested by a good positive correlation between the 2-methylhopane index,7-+8-methyl heptadecanes/C_(max),C_(29%),and β-carotane/C_(max)in sedimentary rocks and the predominance of cyanobacteria with abundantβ-carotene in modern alkaline lakes.The enrichment of β-carotane requires the reducing condition,and the paleoredox state that affects the enrichment of β-carotane appears to have a threshold.The paleoclimate conditions do not considerably impact the enrichment of β-carotane,but they have some influence on the water's paleosalinity by affecting evaporation and precipitation.While it does not directly affect the enrichment of β-carotane in the Fengcheng Fm.,paleosalinity does have an impact on the cyanobacterial precursor supply and the preservation conditions.
基金This research is supported by the Joint Fund of the National Natural Science Foundation of China(grant number U19B6003-02)the Cooperation Program of PetroChina Liaohe Oilfield Company(grant Number HX20180604)the AAPG Foundation Grants-in-Aid Program(grant number 22269437).This study has benefited considerably from PetroChina Liaohe Oilfield Company for data support.We also thank the editor and the anonymous reviewers for their professional suggestions and comments.
文摘Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organic carbon(TOC)content,various kerogen types,and a wide range of thermal maturity.Consequently,their hydrocarbon generation potential and resource estimation can be misinterpreted.In this study,geochemical tests,numerical analysis,hydrocarbon generation kinetics,and basin modeling were integrated to investigate the differential effects of kerogen types on the hydrocarbon generation potential of lacustrine source rocks.Optimized hydrocarbon generation and expulsion(HGE)models of different kerogen types were established quantitatively upon abundant Rock-Eval/TOC/vitrinite reflectance(R_(o))datasets.Three sets of good-excellent source rocks deposited in the fourth(Es4),third(Es3),and first(Es1)members of Paleogene Shahejie Formation,are predominantly types I-II_(1),II_(1)-II_(2),and II-III,respectively.The activation energy of types I-II_(2)kerogen is concentrated(180-230 kcal/mol),whereas that of type III kerogen is widely distributed(150-280 kcal/mol).The original hydrocarbon generation potentials of types I,II_(1),II_(2),and III kerogens are 790,510,270,and 85 mg/g TOC,respectively.The Ro values of the hydrocarbon generation threshold for type I-III source rocks gradually increase from 0.42%to 0.74%,and Ro values of the hydrocarbon expulsion threshold increase from 0.49%to 0.87%.Types I and II_(1)source rocks are characterized by earlier hydrocarbon generation,more rapid hydrocarbon expulsion,and narrower hydrocarbon generation windows than types II_(2)and III source rocks.The kerogen types also affect the HGE history and resource potential.Three types(conventional,tight,and shale oil/gas)and three levels(realistic,expected,and prospective)of hydrocarbon resources of different members in the Liaohe Western Depression are evaluated.Findings suggest that the Es3 member has considerable conventional and unconventional hydrocarbon resources.This study can quantitatively characterize the hydrocarbon generation potential of source rocks with different kerogen types,and facilitate a quick and accurate assessment of hydrocarbon resources,providing strategies for future oil and gas exploration.
基金supported by the National Natural Science Foundation of China (Grant U19B6003-01-02,42102150,42372163)。
文摘The black shale of the Mesoproterozoic Cuizhuang Formation in the Changcheng System in Yongji city,North China Craton,is a potential source rock.Understanding the organic matter enrichment mechanism is crucial for evaluating source rock resources and understanding oil and gas accumulation mechanisms.In this study,we evaluated the sedimentary paleoenvironment and organic matter enrichment mechanisms of shale using thin section observations,mineral composition analysis,organic geochemistry,and elemental geochemistry.We found significant differences in the sedimentary paleoenvironment and organic matter enrichment mechanisms between the lower Cuizhuang Formation and the Beidajian Formation shale.The Cuizhuang Formation was deposited in a late-stage,restricted basin environment during the rift phase,and elemental and geochemical indicators showed that the Cuizhuang Formation was in a suboxic-anoxic water environment,that was influenced by a warm and humid paleoclimate and submarine hydrothermal activities,which promoted the accumulation of organic matter.However,the enrichment of organic matter in the Cuizhuang Formation was mainly controlled by redox conditions.The formation of suboxic-anoxic water environments may be closely related to the warm and humid paleoclimate and submarine hydrothermal activities.Warm conditions promote continental weathering and increase marine productivity,thereby consuming oxygen in the bottom water.Moreover,acidic hydrothermal activity also helps to establish an anoxic environment.Our results reveal the effects controlling various coupled mechanisms dominated by redox conditions,which may explain the development of source rocks in the Cuizhuang Formation.
基金supported by the Certificate of National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2016ZX05006007-004)the National Natural Science Foundation of China(Nos.42172145,42072130)。
文摘Coal is a solid combustible mineral,and coal-bearing strata have important hydrocarbon generation potential and contribute to more than 12%of the global hydrocarbon resources.However,the deposition and hydrocarbon evolution process of ancient coal-bearing strata is characterized by multiple geological times,leading to obvious distinctions in their hydrocarbon generation potential,geological processes,and production,which affect the evaluation and exploration of hydrocarbon resources derived from coaly source rocks worldwide.This study aimed to identify the differences on oil-generated parent macerals and the production of oil generated from different coaly source rocks and through different oil generation processes.Integrating with the analysis of previous tectonic burial history and hydrocarbon generation history,high-temperature and high-pressure thermal simulation experiments,organic geochemistry,and organic petrology were performed on the Carboniferous-Permian(C-P)coaly source rocks in the Huanghua Depression,Bohai Bay Basin.The oil-generated parent macerals of coal's secondary oil generation process(SOGP)were mainly hydrogen-rich collotelinite,collodetrinite,sporinite,and cutinite,while the oil-generated parent macerals of tertiary oil generation process(TOGP)were the remaining small amount of hydrogen-rich collotelinite,sporinite,and cutinite,as well as dispersed soluble organic matter and unexhausted residual hydrocarbons.Compared with coal,the oil-generated parent macerals of coaly shale SOGP were mostly sporinite and cutinite.And part of hydrogen-poor vitrinite,lacking hydrocarbon-rich macerals,and macerals of the TOGP,in addition to some remaining cutinite and a small amount of crude oil and bitumen from SOGP contributed to the oil yield.The results indicated that the changes in oil yield had a good junction between SOGP and TOGP,both coal and coaly shale had higher SOGP aborted oil yield than TOGP starting yield,and coaly shale TOGP peak oil yield was lower than SOGP peak oil yield.There were significant differences in saturated hydrocarbon and aromatic parameters in coal and coaly shale.Coal SOGP was characterized by a lower Ts/Tm and C31-homohopane22S/(22S+22R)and a higher Pr/n C17compared to coal TOGP,while the aromatic parameter methyl dibenzothiophene ratio(MDR)exhibited coaly shale TOGP was higher than coaly shale SOGP than coaly TOGP than coaly SOGP,and coal trimethylnaphthalene ratio(TNR)was lower than coaly shale TNR.Thus,we established oil generation processes and discriminative plates.In this way,we distinguished the differences between oil generation parent maceral,oil generation time,and oil production of coaly source rocks,and therefore,we provided important support for the evaluation,prediction,and exploration of oil resources from global ancient coaly source rocks.
基金co-funded by the National Natural Science Foundation of China (Grant Nos. 42372160, 42072172)Shandong Province Natural Science Fund for Distinguished Young Scholars (Grant No. JQ201311)the Graduate Scientific and Technological Innovation Project financially supported by Shandong University of Science and Technology (Grant No. SDKDYC190313)。
文摘The Jurassic coal-measure source rocks in the Junggar Basin have drawn considerable attention in recent years. In our hydrocarbon thermal simulation experiments of these rocks, we found that the dark mudstone evaluated as good source rock, had a much lower hydrocarbon generation capacity than the coal and carbonaceous mudstone, evaluated as poor source rock. Based on this background, we performed Fourier transform infrared spectroscopy(FTIR) and combined the results of semi-open thermal simulation experiments to explore the association between the molecular structure and hydrocarbon production capacity, with the aim of obtaining a new understanding of hydrocarbon potential of Jurassic coal-measure source rocks from the perspective of molecular structure. The results indicate that coals exhibit lower condensation of aromatic structures and higher relative abundance of aliphatic structures with a higher degree of branched chaining than mudstones and carbonaceous mudstones. Apparent aromaticity(f_a), aromatic abundance parameter I, and degree of condensation(DOC) are negatively correlated with organic matter abundance. The aliphatic structural parameter H demonstrates a substantial positive correlation with organic matter abundance. Furthermore, aliphatic relative abundance factor A is associated with the type of organic matter;the better is the type of the organic matter, the larger is the A value. The combination of the molecular structures with the thermal simulation results shows that the aliphatic hydrogen enrichment of selected carbonaceous mudstone is similar to that of coal. However, the relative abundance of the aliphatic group of it is high, and the DOC of the aromatic structure is low, making the hydrocarbon generation base stronger and easier to crack. Thus, the hydrocarbon generation capacity of carbonaceous mudstone is slightly higher than that of coal. Mudstone has low H and I values, and the DOC is high, indicating that its hydrocarbon base is low, so it has low hydrocarbon generation capacity. Therefore, the molecular structure is closely associated with the hydrocarbon potential of coal-measure source rocks. When evaluating the qualities of coal-measure source rocks, the influence of molecular structure on these rocks should be considered.
文摘Due to limited data on the geochemical properties of natural gas,estimations are needed for the effective gas source rock in evaluating gas potential.However,the pronounced heterogeneity of mudstones in lacustrine successions complicates the prediction of the presence and geochemical characteristics of gas source rocks.In this paper,the Liaohe Subbasin of Northeast China is used as an example to construct a practical methodology for locating effective gas source rocks in typical lacustrine basins.Three types of gas source rocks,microbial,oil-type,and coal-type,were distinguished according to the different genetic types of their natural gas.A practical three-dimensional geological model was developed,refined,and applied to determine the spatial distribution of the mudstones in the Western Depression of the Liaohe Subbasin and to describe the geochemical characteristics(the abundance,type,and maturation levels of the organic matter).Application of the model in the subbasin indicates that the sedimentary facies have led to heterogeneity in the mudstones,particularly with respect to organic matter types.The effective gas source rock model constructed for the Western Depression shows that the upper sequence(SQ2)of the Fourth member(Mbr 4)of the Eocene Shahejie Formation(Fm)and the lower and middle sequences(SQ3 and SQ4)of the Third member(Mbr 3)form the principal gas-generating interval.The total volume of effective gas source rocks is estimated to be 586 km^(3).The effective microbial,oil-type,and coal-type gas source rocks are primarily found in the shallow western slope,the central sags,and the eastern slope of the Western Depression,respectively.This study provides a practical approach for more accurately identifying the occurrence and geochemical characteristics of effective natural gas source rocks,enabling a precise quantitative estimation of natural gas reserves.
基金Supported by the Project from Department of Science and Information of CNOOC(2021-KT-YXKY-03)。
文摘The Bohai Bay Basin,as a super oil-rich basin in the world,is characterized by cyclic evolution and complex regional tectonic stress field,and its lifecycle tectonic evolution controls the formation of regional source rocks.The main pre-Cenozoic stratigraphic system and lithological distribution are determined through geological mapping,and the dynamics of the pre-Cenozoic geotectonic evolution of the Bohai Bay Basin are investigated systematically using the newly acquired high-quality seismic data and the latest exploration results in the study area.The North China Craton where the Bohai Bay Basin is located in rests at the intersection of three tectonic domains:the Paleo-Asian Ocean,the Tethys Ocean,and the Pacific Ocean.It has experienced the alternation and superposition of tectonic cycles of different periods,directions and natures,and experienced five stages of the tectonic evolution and sedimentary building,i.e.Middle–Late Proterozoic continental rift trough,Early Paleozoic marginal-craton depression carbonate building,Late Paleozoic marine–continental transitional intracraton depression,Mesozoic intracontinental strike-slip–extensional tectonics,and Cenozoic intracontinental rifting.The cyclic evolution of the basin,especially the multi-stage compression,strike-slip and extensional tectonics processes in the Hercynian,Indosinian,Yanshan and Himalayan since the Late Paleozoic,controlled the development,reconstruction and preservation of several sets of high-quality source rocks,represented by the Late Paleozoic Carboniferous–Permian coal-measure source rocks and the Paleogene world-class extra-high-quality lacustrine source rocks,which provided an important guarantee for the hydrocarbon accumulation in the super oil-rich basin.
基金Supported by the National Oil and Gas Resource Evaluation Project for the 14th Five Year Plan of the Ministry of Natural Resources(QGYQZYPJ2022-3)China National Offshore Oil Corporation"14th Five Year Plan"Major Science and Technology Project(KJGG2022-0103-03)。
文摘By conducting organic geochemical analysis of the samples taken from the drilled wells in Baiyun Sag of Pearl River Mouth Basin,China,the development characteristics of hydrocarbon source rocks in the sag are clarified.Reconstruct the current geothermal field of the sag and restore the tectonic-thermal evolution process to predict the type,scale,and distribution of resources in Baiyun Sag through thermal pressure simulation experiments and numerical simulation.The Baiyun Sag is characterized by the development of Paleogene shallow lacustrine source rocks,which are deposited in a slightly oxidizing environment.The source rocks are mainly composed of terrestrial higher plants,with algae making a certain contribution,and are oil and gas source rocks.Current geothermal field of the sag was reconstructed,in which the range of geothermal gradients is(3.5–5.2)℃/100 m,showing an overall increasing trend from northwest to southeast,with significant differences in geothermal gradients across different sub-sags.Baiyun Sag has undergone two distinct periods of extensional process,the Eocene and Miocene,since the Cenozoic era.These two periods of heating and warming events have been identified,accelerating the maturation and evolution of source rocks.The main body of ancient basal heat flow value reached its highest at 13.82 Ma.The basin modelling results show that the maturity of source rocks is significantly higher in Baiyun main sub-sag than that in other sub-sags.The Eocene Wenchang Formation is currently in the stage of high maturity to over maturity,while the Eocene Enping Formation has reached the stage of maturity to high maturity.The rock thermal simulation experiment shows that the shallow lacustrine mudstone of the Wenchang Formation has a good potential of generating gas from kerogen cracking with high gas yield and long period of gas window.Shallow lacustrine mudstone of the Enping Formation has a good ability to generate light oil,and has ability to generate kerogen cracking gas in the late stage.The gas yield of shallow lacustrine mudstone of the Enping Formation is less than that of shallow lacustrine mudstone of the Wenchang Formation and the delta coal-bearing mudstone of the Enping Formation.The numerical simulation results indicate that the source rocks of Baiyun main sub-sag generate hydrocarbons earlier and have significantly higher hydrocarbon generation intensity than other sub-sags,with an average of about 1200×10^(4)t/km^(2).Oil and gas resources were mainly distributed in Baiyun main sub-sag and the main source rocks are distributed in the 3^(rd)and 4^(th)members of Wenchang Formation.Four favorable zones are selected for the division and evaluation of migration and aggregation units:No.(1)Panyu 30 nose-shaped structural belt,No.(3)Liuhua 29 nose-shaped uplift belt and Liwan 3 nose-shaped uplift belt,No.(2)gentle slope belt of Baiyun east sag,and No.(8)Baiyun 1 low-uplift.
基金financially supported by the Major State Basic Research Development Program(973 Program)(Grant No.2009CB219402)
文摘Coals developed in the Oligocene Yacheng and Lingshui formations in the Qiongdongnan Basin have high organic matter abundance, and the dark mudstones in the two formations have reached a good source rock standard but with strong heterogeneity. Through the analysis of trace elements, organic macerals and biomarkers, it is indicated that plankton has made little contribution to Oligocene source rocks compared with the terrestrial higher plants. The organic matter preservation depends on hydrodynamics and the redox environment, and the former is the major factor in the study area. During the sedimentary period of the Yacheng Formation, tidal flats were developed in the central uplift zone, where the hydrodynamic conditions were weak and the input of terrestrial organic matter was abundant. So the Yacheng Salient of the central uplift zone is the most favorable area for the development of source rocks, followed by the central depression zone. During the sedimentary period of the Lingshui Formation, the organic matter input was sufficient in the central depression zone due to multiple sources of sediments. The semi-enclosed environment was favorable for organic matter accumulation, so high quality source rocks could be easily formed in this area, followed by the Yacheng salient of central uplift zone. Source rocks were less developed in the northern depression zone owing to poor preservation conditions,
基金supported by the Open Fund Project of State Key Laboratory of Lithospheric Evolution [SKL-K202103]support of the Exploration and Development Research Institute of Petro China Southwest Oil & Gas Field
文摘Hydrocarbon expulsion features and resource potential evaluation of source rocks are crucial for the petroleum exploration.High-maturity marine source rocks have not exhibited a hydrocarbon expulsion mode owing to the lack of low-maturity source rocks in deep petroliferous basins.We considered the Ediacaran microbial dolomite in the Sichuan Basin,the largest high-maturity marine gas layer in China,to exhibit a method that quantitatively characterizes the hydrocarbon expulsion of high-maturity marine source rocks.The experiment of fluid inclusion,rock pyrolysis,and vitrinite reflectance(Ro)of 119 microbial dolomite core samples obtained from the Dengying Formation were performed.A hydrocarbon expulsion model of high-maturity source rock was established,and its resource potential was evaluated.The results showed that the Ediacaran microbial dolomite in the Sichuan Basin is a good source rock showing vast resource potential.The hydrocarbon expulsion threshold is determined to be vitrinite reflectance at 0.92%.The hydrocarbon expulsion intensities in the geologic history is high with maximum of 1.6×10^(7)t/km^(2).The Ediacaran microbial dolomite expelled approximately 1.008×10^(12)t of hydrocarbons,and the recoverable resource was 1.5×10^(12)m^(3).The region can be categorized into areasⅠ,Ⅱ,Ⅲ,andⅣ,in decreasing order of hydrocarbon expulsion intensity.Areas with a higher hydrocarbon expulsion intensity have a lower drilling risk and should be prioritized for exploration in the orderⅠ>Ⅱ>Ⅲ>Ⅳ.Two areas,northern and central parts of Ediacaran in the Sichuan Basin,were selected as prospects which had the drilling priority in the future gas exploration.The production data of 55 drilled wells verified the high reliability of this method.This model in this study does not require low-maturity samples and can be used for evaluating high-maturity marine source rocks,which has broad applicability in deep basins worldwide.
基金funded by the 973 Prophase Special Program of China(NO.2011CB211701)National Natural Science Foundation of China(41172134)CNPC Innovation Foundation (2011D-5006-0101)
文摘The theory of "source rock control" has evolved from source-rock-control hydrocarbon accumulation, to effective source-rock-control hydrocarbon accumulation, and to high-quality source- rock-control hydrocarbon accumulation. However, there are problems, such as whether high-quality source rocks exist or not? What high-quality source rocks are, and how to identify them, are yet to be agreed upon. Aimed at this issue of concern to explorationists, and taking the Beier Sag in the Hailaer Basin as an example, this paper defines the high-quality source rocks and the lower limit for evaluation of high-quality source rocks, by using the inflection point on the relationship curve of hydrocarbon (oil) expulsion, which is calculated by the material balance principle, versus total organic carbon (TOC). The results show that when TOC is low, all source rocks have limited hydrocarbon expulsion and slow growth rate, thus they cannot be high-quality source rocks. However, when TOC rises to some threshold, hydrocarbon expulsion increases significantly with TOC. This inflection point should be the lower limit of high-quality source rocks: those with TOC greater than the inflection-point value are high-quality source rocks. In addition, the lower limit of high-quality source rocks is also related to the type and maturity of organic matters in the source rocks, as well as the mineral components of the source rocks affecting the residual hydrocarbons. Theoretically, the lower limit of high-quality source rocks depends on geological conditions rather than being a constant value. However, for the sake of simplicity and practicability, in this paper TOC=2.0% is regarded as the lower limit of high-quality source rocks. The examination of such standard in the work area indicates that the high-quality source rocks in members K^n2 and K^n~ of the Nantun formation contribute 76% and 82% to oil generation, and 96% and 91% to oil expulsion, respectively. The distribution of high-quality source rocks is also closely related to the distribution of hydrocarbon reservoirs in the region, demonstrating that high-quality source rocks control hydrocarbon accumulation.
基金supported by the Certificate of National Science and Technology Major Project of the Ministry of Science and Technology of China(2016ZX05006007-004,2016ZX05014)National Natural Science Foundation of China(41702139,U1663204,41602138,41602142)+1 种基金Natural Science Foundation of Shandong Province(ZR2017BD036,ZR2017LD005)Fundamental Research Funds for the Central Universities(18CX02008A)。
文摘Natural gas and condensate derived from Carboniferous-Permian(C-P)coaly source rocks discovered in the Dagang Oilfield in the Bohai Bay Basin(east China)have important implications for the potential exploration of C-P coaly source rocks.This study analyzed the secondary,tertiary,and dynamic characteristics of hydrocarbon generation in order to predict the hydrocarbon potentials of different exploration areas in the Dagang Oilfield.The results indicated that C-P oil and gas were generated from coaly source rocks by secondary or tertiary hydrocarbon generation and characterized by notably different hydrocarbon products and generation dynamics.Secondary hydrocarbon generation was completed when the maturity reached vitrinite reflectance(Ro)of 0.7%-0.9%before uplift prior to the Eocene.Tertiary hydrocarbon generation from the source rocks was limited in deep buried sags in the Oligocene,where the products consisted of light oil and gas.The activation energies for secondary and tertiary hydrocarbon generation were 260-280 kJ/mol and 300-330 kJ/mol,respectively,indicating that each instance of hydrocarbon generation required higher temperature or deeper burial than the previous instance.Locations with secondary or tertiary hydrocarbon generation from C-P coaly source rocks were interpreted as potential oil and gas exploration regions.
基金supported by the National Natural Science Foundation of China(42272162)the Natural Science Foundation of Guangdong Province(2021A1515011381 and 2021A1515011635)the Science Project of the CNOOC(KJZH-2021-0003-00).
文摘Hydrocarbon resources in the Qiongdongnan Basin have become an important exploration target in China.However,the development of high-quality source rocks in this basin,especially in its deep-water areas,are still not fully understood.In this study,evolutions of sedimentary facies and palaeoenvironment and their influences on the development of source rocks in diverse tectonic regions of the Qiongdongnan Basin were investigated.The results show that during the Oligocene and to Miocene periods,the sedimentary environment of this basin progressively varied from a semi-closed gulf to an open marine environment,which resulted in significant differences in palaeoenvironmental conditions of the water column for various tectonic regions of the basin.In shallow-water areas,the palaeoproductivity and reducibility successively decrease,and the hydrodynamic intensity gradually increases for the water columns of the Yacheng,Lingshui,and Sanya-Meishan strata.In deep-water areas,the water column of the Yacheng and Lingshui strata has a higher palaeoproductivity and a weaker hydrodynamic intensity than that of the Sanya-Meishan strata,while the reducibility gradually increases for the water columns of the Yacheng,Lingshui,and Sanya-Meishan strata.In general,the palaeoenvironmental conditions of the water column are the most favorable to the development of the Yacheng organic-rich source rocks.Meanwhile,the Miocene marine source rocks in the deep-water areas of the Qiongdongnan Basin may also have a certain hydrocarbon potential.The differences in the development models of source rocks in various tectonic regions of continental margin basins should be fully evaluated in the exploration and development of hydrocarbons.
基金financially supported by the National Key Research and Development Program of China (Grant No. 2017YFC0603106)。
文摘The organic geochemistry and petrology of source rocks determine the hydrocarbon generation potential of the Banqiao Sag. In this study, organic geochemistry and petrology were used to determine the abundance of organic matter(OM), OM type, OM maturity, and sedimentary environments of the source rocks, collected from Cenozoic Shahejie Formation, Banqiao Sag, Bohai Bay Basin, China. Vitrinite and liptinite are the main maceral composition of the source rocks, and range from 18% to 81% and from 2% to82% on a mineral matter free(MMF) basis, respectively. The values of vitrinite reflectance(Ro)(0.36%-1.20%) and the Tmaxvalues(397-486.C) show that the thermal maturity range from low mature to peak-maturity. The abundance of OM varies between 0.22% and 4.37%, suggesting that the source rocks of the Shahejie(Es) Formation are mainly fair to good source rocks. The Rock-Eval pyrolysis results show that the source rocks have good petroleum generation potential. The amount of free hydrocarbons(S_1)and hydrocarbons generated from pyrolysis(S_(2)) range within 0.01-3.70 mg/g, and 0.04-29.17 mg/g. The hydrogen index(HI) varies between 18.18 and 741.13 mg HC/g TOC, with most of the samples appearing to be mainly Type II kerogen, and thereby exhibiting the ability to generate both oil and gas. The ratios of Pr/Ph, the cross plot of Pr/nC_(17)-Ph/nC_(18), the cross plot of C_(29)/C_(27)-Pr/Ph, and ternary of dibenzothiophene, dibenzofuran, and fluorene, indicate that the Shahejie Formation deposited in suboxic and weak reducing environments. The main biological source is from advanced plants. The maceral composition and rock pyrolysis data indicate the kerogen type is a humic type or mixed sapropelic-humic type. The source rocks of the Shahejie(Es) Formation occur in the oil window, and the abundant organic richness,humic kerogen demonstrate that these rocks are effective oil and gas source rocks. The mudstone rocks in the Shahejie Formation are the main source of oil and gas and represent the main exploration target for the Banqiao Sag. This study enhances the great prospect of oil and gas production in the Banqiao Sag.
文摘According to the study on the oil-gas source rocks in China for ten years,in connection with the microscopic, submicroscopic levels, the authors used the microscope photometry together with transmission electronic microscopy, scanning electronic microscopy and proposed a new classification for sedimentary organic matters.
基金Supported by the National Natural Science Foundation of China(41472120)
文摘The influence of water on gas generation from humic type organic matter at highly to over mature stage was investigated with thermal simulation experiments at high temperature and pressure.The result of the experiments indicates that the effect of water on gas generation was controlled by the thermal maturity of organic matter.Water could enhance gas generation and increase hydrocarbon gas yields significantly at over mature stage of humic type organic matter.Hydrogen isotopic compositions of coal-derived gases generated at highly to over mature stage were mainly controlled by thermal maturity of source rocks,but also affected by formation water.Highly and over mature coal measure source rocks are widely distributed in China.The hydrocarbon gas generation capacity of coal measure source rocks and resource potential of coal-derived gases in deep formations would be significantly enhanced assuming that formation water could be involved in the thermal cracking of highly to over mature organic matter in real geological settings.
基金supported by the Major State Basic Research Development Program (973 project, Grant No. 2012CB214803)National Natural Science Foundation of China (Grant No. 41322017)
文摘The Cretaceous is one of the most important stratigraphic intervals for hydrocarbon source rocks. This article summarizes the distribution, formation, and development characteristics of Cretaceous source rocks and associated oil and gas resources in the world and China, aiming at improving the understanding of this hydrocarbon enrichment and at broadening domestic exploration. Outside China, these rocks are generally formed in marine or transgressive environments during both the Upper and Lower Cretaceous. The majority of Cretaceous source rocks are located in the Persian Gulf, Mediterranean, and Gulf Coast of the USA. Kerogen types within these source rocks have distinct spatial distribution characteristics, with high-latitude Boreal Realm, Tethyan Realm and South Gondwana Realm source rocks containing type III, II, II-III kerogens, respectively. Cretaceous source rocks in China can be mainly divided into four zones: Eastern, Central, Northwest, and Qinghai-Tibet Plateau zones. The majority of Chinese source rocks formed in the Early Cretaceous, whereas the most productive source rocks are developed in the Upper Cretaceous, such as those within the Songliao Basin. Most of these basins are formed in lacustrine environments, although some may have been influenced by transgressive events: Cretaceous source rocks are formed in four distinctive ways: 1) during Oceanic Anoxic Events and associated global sea-level rises, 2) in Black Sea-type retention basins, 3) during transgression and 4) during periods of significant terrestrial input. Formation of these source rocks is controlled by four factors: paleoclimate, paleotopography, transgression, and Oceanic Anoxic Events. These four major controlling factors indicate that China's hydrocarbon exploration within the Cretaceous should focus on two key areas with extremely low exploration levels, the Qinghai-Tibet Plateau and the southeastern coast of China.
文摘Research on effective source rocks directly affects the accuracy of identifying hydrocarbon resources, and indirectly affects the exploration decisions in petroliferous basins. Although the previous evaluation methods of effective source rocks vary relatively widely, a complete quantitative evaluation approach has not yet been developed. For that reason, we redefined the concept of effective source rocks based on the existing research results. Surrounding this definition, and guided by the hydrocarbon expulsion theory, the quantitative model called "two stages and three steps" method is established to predict effective source rocks. Its application in the Bozhong Depression indicates that among the four sets source rocks in the Bozhong Depression, the Member 3 of the Shahejie Formation (Es 3 ) has the largest effective source rock thickness, and the Member 1 Member 2 of the Shahejie Formation (Es 1+2 ) is the second largest .The effective part of dark mudstone is only 30%-80% of the total volume and with the increase of buried depth and improvement of quality, the effective part increases. Comprehensive analysis indicates that the "two stages and three steps" method is a practical technique for effective source rock prediction.
基金financially supported by the Science Foundation of China University of Petroleum,Beijing(Grant No.2462020BJRC005)the Joint Funds of National Natural Science Foundation of China(Grant No.U19B6003-02)。
文摘Hydrocarbon expulsion occurs only when pore fluid pressure due to hydrocarbon generation in source rock exceeds the force against migration in the adjacent carrier beds.Taking the Middle-Upper Ordovician carbonate source rock of Tarim Basin in China as an example,this paper proposes a method that identifies effective carbonate source rock based on the principles of mass balance.Data from the Well YW2 indicate that the Middle Ordovician Yijianfang Formation contains effective carbonate source rocks with low present-day TOC.Geological and geochemical analysis suggests that the hydrocarbons in the carbonate interval are likely self-generated and retained.Regular steranes from GC-MS analysis of oil extracts in this interval display similar features to those of the crude oil samples in Tabei area,indicating that the crude oil probably was migrated from the effective source rocks.By applying to other wells in the basin,the identified effective carbonate source rocks and non-source rock carbonates can be effectively identified and consistent with the actual exploration results,validating the method.Considering the contribution from the identified effective source rocks with low present-day TOC(TOC_(pd))is considered,the long-standing puzzle between the proved 3 P oil reserves and estimated resources in the basin can be reasonably explained.
基金funded by NSFC (National Science Foundation of China) No. 41372130
文摘The molecular composition and biomarker distribution of various occurrences of organic matter in argillaceous source rocks developed in fresh and saline lacustrine environments were revealed by successive treatments of solvent extraction followed by acid hydrolysis using gas chromatography–mass spectrometry. The free fraction obtained by solvent extraction provided abundant geochemical information concerning the sedimentary environment, thermal maturity and biogenic origin, and obvious differences existed between fresh and saline lacustrine source rock samples. Our research results indicate that the carbonate-mineral-bound(CM-bound) fraction released by successive acid hydrolysis could also serve as a significant biogenic indicator, as the bicyclic sesquiterpenoids, indicative of Botryococcus braunii origin, were specifically detected in quite high abundance in the acid-soluble fraction. In addition, the light end hydrocarbons were much better preserved in the acid-soluble fraction, and elemental sulfur was only detected in the CM-bound fraction, suggesting a relatively confined environment for the CM-bound fraction, which thus could preserve additional geochemical information compared to that of the free fraction. The CM-bound fraction also exhibited discernable differences between fresh and saline lacustrine samples. Therefore, it can be concluded that comprehensive analysis of free and CM-bound fractions in the argillaceous source rocks can provide a more authentic and objective interpretation of geologic conditions.