Buried interfacial voids have always been a notorious phenomenon observed in the fabrication of lead perovskite films. The existence of interfacial voids at the buried interface will capture the carrier, suppress carr...Buried interfacial voids have always been a notorious phenomenon observed in the fabrication of lead perovskite films. The existence of interfacial voids at the buried interface will capture the carrier, suppress carrier transport efficiencies, and affect the stability of photovoltaic devices. However, the impact of these buried interfacial voids on tin perovskites, a promising avenue for advancing lead-free photovoltaics, has been largely overlooked. Here, we utilize an innovative weakly polar solvent pretreatment strategy(WPSPS) to mitigate buried interfacial voids of tin perovskites. Our investigation reveals the presence of numerous voids in tin perovskites during annealing, attributed to trapped dimethyl sulfoxide(DMSO) used in film formation. The WPSPS method facilitates accelerated DMSO evaporation, effectively reducing residual DMSO. Interestingly, the WPSPS shifts the energy level of PEDOT:PSS downward, making it more aligned with the perovskite. This alignment enhances the efficiency of charge carrier transport. As the result, tin perovskite film quality is significantly improved,achieving a maximum power conversion efficiency approaching 12% with only an 8.3% efficiency loss after 1700 h of stability tests, which compares well with the state-of-the-art stability of tin-based perovskite solar cells.展开更多
Currently,pyrolysis as the most widely used method still has some key issues not well resolved for synthesis of carbon-supported single-atom catalysts(C-SACs),e.g.,the sintering of metal atoms at high temperature as w...Currently,pyrolysis as the most widely used method still has some key issues not well resolved for synthesis of carbon-supported single-atom catalysts(C-SACs),e.g.,the sintering of metal atoms at high temperature as well as the high cost and complicated preparations of precursors.In this report,molten salts are demonstrated to be marvellous medium for preparation of C-SACs by pyrolysis of small molecular precursors(ionic liquid).The ultrastrong polarity on one hand establishes robust interaction with precursor and enables better carbonization,resulting in largely enhanced yield.On the other hand,the aggregation of metal atoms is effectively refrained while no nanoparticle or cluster is formed.By this strategy,a C-SAC with atomically dispersed Fe-N_(4) sites and a high specific area over 2000 m^(2) g^(-1) is obtained,which illustrates high ORR activity in both acid and alkaline media.Moreover,this SAC exhibits superior methanol tolerance and stability after acid soaking at 85℃ for 48 h.It is believed that the molten-salts-assisted pyrolysis can be developed into a routine strategy as it not only can largely simply the synthesis of C-SACs,but also can be extended to prepare other types of SACs.展开更多
基金National Natural Science Foundation of China (62274094, 62175117)Natural Science Foundation of Jiangsu Higher Education Institutions (22KJB510011)+1 种基金Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University (KJS2260)Huali Talents Program of Nanjing University of Posts and Telecommunications。
文摘Buried interfacial voids have always been a notorious phenomenon observed in the fabrication of lead perovskite films. The existence of interfacial voids at the buried interface will capture the carrier, suppress carrier transport efficiencies, and affect the stability of photovoltaic devices. However, the impact of these buried interfacial voids on tin perovskites, a promising avenue for advancing lead-free photovoltaics, has been largely overlooked. Here, we utilize an innovative weakly polar solvent pretreatment strategy(WPSPS) to mitigate buried interfacial voids of tin perovskites. Our investigation reveals the presence of numerous voids in tin perovskites during annealing, attributed to trapped dimethyl sulfoxide(DMSO) used in film formation. The WPSPS method facilitates accelerated DMSO evaporation, effectively reducing residual DMSO. Interestingly, the WPSPS shifts the energy level of PEDOT:PSS downward, making it more aligned with the perovskite. This alignment enhances the efficiency of charge carrier transport. As the result, tin perovskite film quality is significantly improved,achieving a maximum power conversion efficiency approaching 12% with only an 8.3% efficiency loss after 1700 h of stability tests, which compares well with the state-of-the-art stability of tin-based perovskite solar cells.
基金financially supported by the National Natural Science Foundation of China(Grant No.51773025)the Natural Science Foundation of Liaoning Province(Materials Joint Foundation,Grant No.20180510027)Dalian science and technology innovation fund(Grant No.019J12GX032)。
文摘Currently,pyrolysis as the most widely used method still has some key issues not well resolved for synthesis of carbon-supported single-atom catalysts(C-SACs),e.g.,the sintering of metal atoms at high temperature as well as the high cost and complicated preparations of precursors.In this report,molten salts are demonstrated to be marvellous medium for preparation of C-SACs by pyrolysis of small molecular precursors(ionic liquid).The ultrastrong polarity on one hand establishes robust interaction with precursor and enables better carbonization,resulting in largely enhanced yield.On the other hand,the aggregation of metal atoms is effectively refrained while no nanoparticle or cluster is formed.By this strategy,a C-SAC with atomically dispersed Fe-N_(4) sites and a high specific area over 2000 m^(2) g^(-1) is obtained,which illustrates high ORR activity in both acid and alkaline media.Moreover,this SAC exhibits superior methanol tolerance and stability after acid soaking at 85℃ for 48 h.It is believed that the molten-salts-assisted pyrolysis can be developed into a routine strategy as it not only can largely simply the synthesis of C-SACs,but also can be extended to prepare other types of SACs.