The method that we can choose is only the more complicated flux growth techniqUe.A broad range of fluxes which contain B_(2)O_(3),PbO_(2),PbF_(2)and alkali halides etc.have been therefore attemped in our lab、in order...The method that we can choose is only the more complicated flux growth techniqUe.A broad range of fluxes which contain B_(2)O_(3),PbO_(2),PbF_(2)and alkali halides etc.have been therefore attemped in our lab、in order to grow large high quality LBO crystals.Most of them seems infavorable to the growth of LBO crystals,and PbO and PbF_(2)also have to be excluded from our considerations although these additives can reduce the viscosity of the growth solution and enhance growth rate,since Pb^(2+)ion can easily enter into the crystal lat-tice and may cause the shatter of crystal thereby.展开更多
TGS (triglycine sulfate) is a pyroelectric crystal material which has an excllent pyroelectricity.The LATGS,a kind of doped TGS crystal,in which L α alanine (LA) substitues for glycine partially and induces an intern...TGS (triglycine sulfate) is a pyroelectric crystal material which has an excllent pyroelectricity.The LATGS,a kind of doped TGS crystal,in which L α alanine (LA) substitues for glycine partially and induces an internal bias in TGS resulting in permanently poled single domain crystal,becomes the comprehensively used pyroelectric material. Based on the study which was about the locked polarization in LATGS,we select many kinds of aminoacids which have a strong polarity group and a unsymmetry atom to dope into TGS crystals.The aninoacids are LB (L asparagine),LL (L lysine),LH (L histidine) and LG (L glutamid acid).The saturated solutions for above four crystals growth are prepared by TGS doped with different aminoacids in water. Transparent crystals up to several centinetres in size have been grown by circling plate method and the reversible rotation rate of the platform with the crystal was about 90 r/min.There was a prefered growth in the b axis direction,with a growth rate of the b axis of about 1.0-1.2mm/day.The concentrations of aminoacids doped in TGS crystals were determined by a liquid chromatography,the concentrations of different aminoacids are about 10 -3 . It shows that the lattice parameters ( a,b and V )of TGS doped with aminoacids are significant longer than that of pure TGS crystal. We conclude that the pyroelectic cofficient,pyroelectric merit and the locked polarization of four TGS crystals,especially,the internal bield ( E b ) of LLTGS is larger than the LATGS,so that the LLTGS crystal is a promising pyroelectrc material for infrared detector.展开更多
Sodium chlorate is a no coloured,no smell and no poisonous transparent crystal with the formula of NaClO 3.Its structure belongs to the cubic( T 23)class and exhibits optical activity.The space group is P 2 13 and the...Sodium chlorate is a no coloured,no smell and no poisonous transparent crystal with the formula of NaClO 3.Its structure belongs to the cubic( T 23)class and exhibits optical activity.The space group is P 2 13 and there are four molecules per cubic unit cell with a =0.6570nm.We chose the crystal as a research system based on two reasons:(1)since the crystal structure belongs to the cubic class,the crystal faces,such as(100),(010),(001)are possessed of homogeneity,it is the suitable system for studying kinetics of crystal growth;(2)since the solubility of the NaClO 3 is higher in the H 2O and the crystal could be grown from low temperature solution,this is a suitable system for studying a influence of gravity on the boundary layer characteristics of the crystal growth under the microgravity condition.展开更多
In this paper,ferroelectric tetragonal tungsten bronze type potassium lithium niobate(KLN)crystal with a size of 20mm×8mm×43mm was grown from a melt with a composition of 32mol% K 2CO 3,24mol% Li 2CO 3 and 4...In this paper,ferroelectric tetragonal tungsten bronze type potassium lithium niobate(KLN)crystal with a size of 20mm×8mm×43mm was grown from a melt with a composition of 32mol% K 2CO 3,24mol% Li 2CO 3 and 44mol% Nb 2O 5 by the top seeded solution growth (TSSG)method.The KLN crystal as grown along [110]axis has a perfect crystal melt interface dominated by {110} and {210} facets.Lattice constants were measured by X ray diffraction (XRD) analysis performed on {001}and {110}natural faces of single crystal samples.The anisotropic thermal expansion behavior of the crystal was also studied along [001] and [110] axes,respectively by using a Shimadzu TMA 50 thermomechnical analyzer.For the purpose of crystal poling,the dependence of crystal capacitance vs.temperature in both heating and cooling cycles was measured and the ferroelectric Curie temperature was determined to be 514℃.The crystal was poled at 506℃ with a dc field of about 250 V/cm along the c axis of the sample,for a time corresponding to about 1.5 h/cm.The blue second harmonic generation (SHG)characteristics of the KLN crystal were investigated by using a 3900s Ti∶sapphire CW tunable laser.Blue laser light at wavelength 432nm was obtained by the non critical phase matching (NCPM)SHG at room temperature.Based on the wavelength and temperature tuning curves for the NCPM SHG,the wavelength acceptance and temperature acceptance of this KLN crystal were measured.The crystal property homogeneity along the <110>growth axis was also studied by measuring the room temperature NCPM wavelength at different growth positions.展开更多
KDP and its deuterated analog DKDP (K (D x H 1- x ) 2PO 4) are the first ch oice materials in the fabrication of optical switcher and frequency converter fo r inertial confinement fusion study.In the past years,the gr...KDP and its deuterated analog DKDP (K (D x H 1- x ) 2PO 4) are the first ch oice materials in the fabrication of optical switcher and frequency converter fo r inertial confinement fusion study.In the past years,the growth technique has b een d eveloped greatly.Large aperture crystals can be grown with various methods,such as,temperature decreasing,solution circular flow,and rapid growth method,which i ntend to reduce the cost of production and satisfy the requirement of ICF.As to rapid growth method,much attention has been paid to solution stability and the K DP crystal qualities of this method which has been proved that high speed can be obtained.LLNL has grown KDP crystal with dimension of 57mm×57mm×55mm,260 kil ogram in 59 days.This method is very different from conventional method for grow ing KDP crystal in three directions uniformly.In addition to the growth of the pyramidal faces,rapid crystallization from supersaturated solution results in si gnificant growth of prismatic faces.Inclusions of growth solution and incorporat ion of metal impurities will occur in the prism sector as prism extends very muc h by this method.Fast growth needs high supersaturation(10%—30%),so the grow th condition,such as ,raw materials,apparatus,temperature lowing proceed should be controlled very strictly.In order to improve the utilization of KDP crystal g rown by point seed method,we developed 4 vessels circular technique on the bas e of 3 vessels circular technique recently.展开更多
The quality of substrate crystals is critical to the performance of devices used in electronic and optoelectronic applications.These bulk crystals are mostly grown from the melt or solution,with a well controlled soli...The quality of substrate crystals is critical to the performance of devices used in electronic and optoelectronic applications.These bulk crystals are mostly grown from the melt or solution,with a well controlled solidification or supersaturation,which is affected significantly by the heat and mass flows.Particularly,in the melt growth,the interface kinetics is so fast that the growth is mainly controlled by the transport processes.Hence,the intricate coupling of heat and mass transfer and melt flow strongly influences the grown crystal quality,but its analysis and control is not a trivial task.For most materials,such as semiconductors and oxides,a detailed analysis of the transport processes through experiments is extremely difficult due to the long growth period at high temperature.Therefore,numerical simulation is inevitable.For the past ten years,crystal growth modeling has become one of the most active research fields in materials processing.Indeed,as long as the melt crystal growth of semiconductors remains a mainstay of the microelectronics industry,its modeling continues to be important.In this talk,the role of transport phenomena in bulk crystal growth and their detailed nonlinear analysis are illustrated through our research work over the years.Particular interests will be paid to the zone melting and Bridgman crystal growth.The control of convection and interface shape through external forces,such as rotation,magnetic fields,and vibration will be discussed.Interface instability leading to“pit formation”and interface breakdown due to thermal and solutal flows will also be illustrated.展开更多
文摘The method that we can choose is only the more complicated flux growth techniqUe.A broad range of fluxes which contain B_(2)O_(3),PbO_(2),PbF_(2)and alkali halides etc.have been therefore attemped in our lab、in order to grow large high quality LBO crystals.Most of them seems infavorable to the growth of LBO crystals,and PbO and PbF_(2)also have to be excluded from our considerations although these additives can reduce the viscosity of the growth solution and enhance growth rate,since Pb^(2+)ion can easily enter into the crystal lat-tice and may cause the shatter of crystal thereby.
文摘TGS (triglycine sulfate) is a pyroelectric crystal material which has an excllent pyroelectricity.The LATGS,a kind of doped TGS crystal,in which L α alanine (LA) substitues for glycine partially and induces an internal bias in TGS resulting in permanently poled single domain crystal,becomes the comprehensively used pyroelectric material. Based on the study which was about the locked polarization in LATGS,we select many kinds of aminoacids which have a strong polarity group and a unsymmetry atom to dope into TGS crystals.The aninoacids are LB (L asparagine),LL (L lysine),LH (L histidine) and LG (L glutamid acid).The saturated solutions for above four crystals growth are prepared by TGS doped with different aminoacids in water. Transparent crystals up to several centinetres in size have been grown by circling plate method and the reversible rotation rate of the platform with the crystal was about 90 r/min.There was a prefered growth in the b axis direction,with a growth rate of the b axis of about 1.0-1.2mm/day.The concentrations of aminoacids doped in TGS crystals were determined by a liquid chromatography,the concentrations of different aminoacids are about 10 -3 . It shows that the lattice parameters ( a,b and V )of TGS doped with aminoacids are significant longer than that of pure TGS crystal. We conclude that the pyroelectic cofficient,pyroelectric merit and the locked polarization of four TGS crystals,especially,the internal bield ( E b ) of LLTGS is larger than the LATGS,so that the LLTGS crystal is a promising pyroelectrc material for infrared detector.
文摘Sodium chlorate is a no coloured,no smell and no poisonous transparent crystal with the formula of NaClO 3.Its structure belongs to the cubic( T 23)class and exhibits optical activity.The space group is P 2 13 and there are four molecules per cubic unit cell with a =0.6570nm.We chose the crystal as a research system based on two reasons:(1)since the crystal structure belongs to the cubic class,the crystal faces,such as(100),(010),(001)are possessed of homogeneity,it is the suitable system for studying kinetics of crystal growth;(2)since the solubility of the NaClO 3 is higher in the H 2O and the crystal could be grown from low temperature solution,this is a suitable system for studying a influence of gravity on the boundary layer characteristics of the crystal growth under the microgravity condition.
文摘In this paper,ferroelectric tetragonal tungsten bronze type potassium lithium niobate(KLN)crystal with a size of 20mm×8mm×43mm was grown from a melt with a composition of 32mol% K 2CO 3,24mol% Li 2CO 3 and 44mol% Nb 2O 5 by the top seeded solution growth (TSSG)method.The KLN crystal as grown along [110]axis has a perfect crystal melt interface dominated by {110} and {210} facets.Lattice constants were measured by X ray diffraction (XRD) analysis performed on {001}and {110}natural faces of single crystal samples.The anisotropic thermal expansion behavior of the crystal was also studied along [001] and [110] axes,respectively by using a Shimadzu TMA 50 thermomechnical analyzer.For the purpose of crystal poling,the dependence of crystal capacitance vs.temperature in both heating and cooling cycles was measured and the ferroelectric Curie temperature was determined to be 514℃.The crystal was poled at 506℃ with a dc field of about 250 V/cm along the c axis of the sample,for a time corresponding to about 1.5 h/cm.The blue second harmonic generation (SHG)characteristics of the KLN crystal were investigated by using a 3900s Ti∶sapphire CW tunable laser.Blue laser light at wavelength 432nm was obtained by the non critical phase matching (NCPM)SHG at room temperature.Based on the wavelength and temperature tuning curves for the NCPM SHG,the wavelength acceptance and temperature acceptance of this KLN crystal were measured.The crystal property homogeneity along the <110>growth axis was also studied by measuring the room temperature NCPM wavelength at different growth positions.
文摘KDP and its deuterated analog DKDP (K (D x H 1- x ) 2PO 4) are the first ch oice materials in the fabrication of optical switcher and frequency converter fo r inertial confinement fusion study.In the past years,the growth technique has b een d eveloped greatly.Large aperture crystals can be grown with various methods,such as,temperature decreasing,solution circular flow,and rapid growth method,which i ntend to reduce the cost of production and satisfy the requirement of ICF.As to rapid growth method,much attention has been paid to solution stability and the K DP crystal qualities of this method which has been proved that high speed can be obtained.LLNL has grown KDP crystal with dimension of 57mm×57mm×55mm,260 kil ogram in 59 days.This method is very different from conventional method for grow ing KDP crystal in three directions uniformly.In addition to the growth of the pyramidal faces,rapid crystallization from supersaturated solution results in si gnificant growth of prismatic faces.Inclusions of growth solution and incorporat ion of metal impurities will occur in the prism sector as prism extends very muc h by this method.Fast growth needs high supersaturation(10%—30%),so the grow th condition,such as ,raw materials,apparatus,temperature lowing proceed should be controlled very strictly.In order to improve the utilization of KDP crystal g rown by point seed method,we developed 4 vessels circular technique on the bas e of 3 vessels circular technique recently.
文摘The quality of substrate crystals is critical to the performance of devices used in electronic and optoelectronic applications.These bulk crystals are mostly grown from the melt or solution,with a well controlled solidification or supersaturation,which is affected significantly by the heat and mass flows.Particularly,in the melt growth,the interface kinetics is so fast that the growth is mainly controlled by the transport processes.Hence,the intricate coupling of heat and mass transfer and melt flow strongly influences the grown crystal quality,but its analysis and control is not a trivial task.For most materials,such as semiconductors and oxides,a detailed analysis of the transport processes through experiments is extremely difficult due to the long growth period at high temperature.Therefore,numerical simulation is inevitable.For the past ten years,crystal growth modeling has become one of the most active research fields in materials processing.Indeed,as long as the melt crystal growth of semiconductors remains a mainstay of the microelectronics industry,its modeling continues to be important.In this talk,the role of transport phenomena in bulk crystal growth and their detailed nonlinear analysis are illustrated through our research work over the years.Particular interests will be paid to the zone melting and Bridgman crystal growth.The control of convection and interface shape through external forces,such as rotation,magnetic fields,and vibration will be discussed.Interface instability leading to“pit formation”and interface breakdown due to thermal and solutal flows will also be illustrated.