Porous sol-gel glass of CaO-SiO2-P2O5 system with macropores larger than 100 μm was prepared by adding stearic acid as pore former when the sintering was carried out at 700 ℃ for 3h.The sol-gel porous glass shows an...Porous sol-gel glass of CaO-SiO2-P2O5 system with macropores larger than 100 μm was prepared by adding stearic acid as pore former when the sintering was carried out at 700 ℃ for 3h.The sol-gel porous glass shows an amorphous structure. The diameter of the pore created by pore former varies from 100 to 300 μm, and macroporous glass has a narrow and small pore size distribution in mesoporous scale. The porosity and pore size of macroporous bioactive glass can be controlled.展开更多
制备了添加少量B2O3和P2O5后的Fe2O3 CaO SiO2体系铁磁微晶玻璃,并进行了微观结构分析、XRD分析、磁性检测以及生理模拟液的浸泡实验.实验结果表明,制备的微晶玻璃材料同时具备磁性和生物活性这两种重要性能.不经过核化处理在1000℃晶...制备了添加少量B2O3和P2O5后的Fe2O3 CaO SiO2体系铁磁微晶玻璃,并进行了微观结构分析、XRD分析、磁性检测以及生理模拟液的浸泡实验.实验结果表明,制备的微晶玻璃材料同时具备磁性和生物活性这两种重要性能.不经过核化处理在1000℃晶化2h后能够获得较理想的磁铁矿主晶相和硅灰石次晶相均匀致密分布的微观组织,所得微晶玻璃具有最佳的磁性能.铁含量提高能够增加微晶玻璃的磁性,然而会抑制微晶玻璃表面羟基磷灰石的形成,从而降低其生物活性.展开更多
基金Project(50174059) supported by the National Natural Science Foundation of China
文摘Porous sol-gel glass of CaO-SiO2-P2O5 system with macropores larger than 100 μm was prepared by adding stearic acid as pore former when the sintering was carried out at 700 ℃ for 3h.The sol-gel porous glass shows an amorphous structure. The diameter of the pore created by pore former varies from 100 to 300 μm, and macroporous glass has a narrow and small pore size distribution in mesoporous scale. The porosity and pore size of macroporous bioactive glass can be controlled.
文摘制备了添加少量B2O3和P2O5后的Fe2O3 CaO SiO2体系铁磁微晶玻璃,并进行了微观结构分析、XRD分析、磁性检测以及生理模拟液的浸泡实验.实验结果表明,制备的微晶玻璃材料同时具备磁性和生物活性这两种重要性能.不经过核化处理在1000℃晶化2h后能够获得较理想的磁铁矿主晶相和硅灰石次晶相均匀致密分布的微观组织,所得微晶玻璃具有最佳的磁性能.铁含量提高能够增加微晶玻璃的磁性,然而会抑制微晶玻璃表面羟基磷灰石的形成,从而降低其生物活性.