Flexible tactile sensors have broad applications in human physiological monitoring,robotic operation and human-machine interaction.However,the research of wearable and flexible tactile sensors with high sensitivity,wi...Flexible tactile sensors have broad applications in human physiological monitoring,robotic operation and human-machine interaction.However,the research of wearable and flexible tactile sensors with high sensitivity,wide sensing range and ability to detect three-dimensional(3D)force is still very challenging.Herein,a flexible tactile electronic skin sensor based on carbon nanotubes(CNTs)/polydimethylsiloxane(PDMS)nanocomposites is presented for 3D contact force detection.The 3D forces were acquired from combination of four specially designed cells in a sensing element.Contributed from the double-sided rough porous structure and specific surface morphology of nanocomposites,the piezoresistive sensor possesses high sensitivity of 12.1 kPa?1 within the range of 600 Pa and 0.68 kPa?1 in the regime exceeding 1 kPa for normal pressure,as well as 59.9 N?1 in the scope of<0.05 N and>2.3 N?1 in the region of<0.6 N for tangential force with ultra-low response time of 3.1 ms.In addition,multi-functional detection in human body monitoring was employed with single sensing cell and the sensor array was integrated into a robotic arm for objects grasping control,indicating the capacities in intelligent robot applications.展开更多
A six-axis force sensor with parallel 8/4-4 structure is introduced and its measurement principle is analyzed.Based on condition numbers of Jacobian matrix spectral norm of the sensor,the relationship between the forc...A six-axis force sensor with parallel 8/4-4 structure is introduced and its measurement principle is analyzed.Based on condition numbers of Jacobian matrix spectral norm of the sensor,the relationship between the force and moment isotropy and some structural parameters is deduced.Orthogonal test methods are used to determine the degree of primary and secondary factors that have significant effect on sensor characteristics.Furthermore,the relationship between each performance index and the structural parameters of the sensor is analyzed by the method of the atlas,which lays a foundation for structural optimization design of the force sensor.展开更多
Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanism...Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanisms are taken as examples.By analyzing the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,a new method for establishing the dynamic equation of the sensing mechanism is proposed.Firstly,based on the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,the expression of the branch rod length is obtained.The inherent constraint relationship between the branches is excavated and the branch coordination closed chain of the“12-6”configuration is constructed.The output coordination equation of the sensing mechanism is successfully derived.Secondly,the dynamic equations of“12-4”and“12-6”configurations are constructed by the Newton-Euler method,and the forward decoupling equations of the two configurations are solved by combining the dynamic equations and the output coordination equations.Finally,the virtual prototype experiment is carried out,and the maximum reference errors of the forward decoupling equations of the two configuration sensing mechanisms are 4.23%and 6.53%,respectively.The results show that the proposed method is effective and feasible,and meets the real-time requirements.展开更多
This paper presents the isotropic optimization of a Stewart-type six-component force sensor. First,the static model of the sensor is built by the screw theory and the forward isotropy indexes and the inverse isotropy ...This paper presents the isotropic optimization of a Stewart-type six-component force sensor. First,the static model of the sensor is built by the screw theory and the forward isotropy indexes and the inverse isotropy indexes are further presented. Second,a comprehensive evaluation function is established to evaluate the isotropic performance of the sensor. By compromising all the isotropy indexes and solving the extreme value of the function,the sensor optimization process is completed and an optimal solution of a set of sensor structure parameters is obtained. Finally,the design of the components and the assembly of the prototype are established by 3D modeling software Pro-E. The verification of the isotropic performance of the sensor is conducted by the finite element analysis software ANSYS. The results obtained by our research can provide useful reference to the isotropic performance evaluation and structure design of the stewart-type six-component force sensor.展开更多
An optic-fiber sensor system for measuring distributed forces is presented. The sensor system chooses high-birefringent fiber as sensing e-iement. Based on coupling effects of polarization modes in high-birefringent ...An optic-fiber sensor system for measuring distributed forces is presented. The sensor system chooses high-birefringent fiber as sensing e-iement. Based on coupling effects of polarization modes in high-birefringent fiber, the distribution of the force points along the sensing fiber can be measured by detecting mode couplings in the fiber which are caused by external force disturbance. The location and magnitude of the measured forces are determined by a heterodyne interferometry and the technique of optic path scanning. The spatial resolution of the sensor system is better than 0. 15m for a 50m testing fiber.展开更多
A cutting force measuring device is developed which is composed of a common tool shank and an optical fibre sensor. The sensor is mounted at the rear of the shank and the deformation of the shank caused by cutting for...A cutting force measuring device is developed which is composed of a common tool shank and an optical fibre sensor. The sensor is mounted at the rear of the shank and the deformation of the shank caused by cutting force is detected as the measurement of cutting force. The device possesses good adaptability to workshop conditions as well as satisfying static and dynamic performances.展开更多
Oxygen control technology is a critical issue for compatibility of candidate structural materials with liquid lead-bismuth eutectic(LBE) in accelerator driven systems. Performances of a self-developed Pt/air sensor an...Oxygen control technology is a critical issue for compatibility of candidate structural materials with liquid lead-bismuth eutectic(LBE) in accelerator driven systems. Performances of a self-developed Pt/air sensor and another one from Karlsruher Institute of Technology(KIT) were tested in stagnant oxygen-saturated liquid LBE.Calibrations showed that the trend and values of corrected electromotive force(EMF) of the self-developed sensor, with a bias voltage of 20 mV, were consistent with theoretical results above 425℃, and similar results were obtained in cross-calibration test with EMF value of KIT sensor as reference. In stability test at 450℃ for 100 hours, the KIT sensor performed better than the self-developed one, which showed signal fluctuations.Both sensors exhibited quick response to temperature variations in the responsiveness test.展开更多
A drive signal frequency-lock method for quartz angular-rate sensor is presented. The calculation result obtained by the equivalent volume force analytic method indicated that when taking the inherent frequency of the...A drive signal frequency-lock method for quartz angular-rate sensor is presented. The calculation result obtained by the equivalent volume force analytic method indicated that when taking the inherent frequency of the drive tines as the drive signal frequency the phase of the reference vibration is 90° behind that of the drive signal, and the square of amplitude is less than that of the maximal amplitude by 1/(4Q~2_d) merely. The curves derived from the finite element analytic method proved that near the inherent frequency the phase shift of the feedback voltage is identical to that of the reference vibration, and the amplitude is proportional to that of the reference vibration, and the phase shift is linear approximatively with the frequency shift. The frequency shift could be calculated according to the phase shift obtained by quadrature correlation detection, so the drive signal frequency could be locked at the inherent frequency of the drive tines by means of iteration.展开更多
基金funding from National Natural Science Foundation of China(NSFC Nos.61774157,81771388,61874121,and 61874012)Beijing Natural Science Foundation(No.4182075)the Capital Science and Technology Conditions Platform Project(Project ID:Z181100009518014).
文摘Flexible tactile sensors have broad applications in human physiological monitoring,robotic operation and human-machine interaction.However,the research of wearable and flexible tactile sensors with high sensitivity,wide sensing range and ability to detect three-dimensional(3D)force is still very challenging.Herein,a flexible tactile electronic skin sensor based on carbon nanotubes(CNTs)/polydimethylsiloxane(PDMS)nanocomposites is presented for 3D contact force detection.The 3D forces were acquired from combination of four specially designed cells in a sensing element.Contributed from the double-sided rough porous structure and specific surface morphology of nanocomposites,the piezoresistive sensor possesses high sensitivity of 12.1 kPa?1 within the range of 600 Pa and 0.68 kPa?1 in the regime exceeding 1 kPa for normal pressure,as well as 59.9 N?1 in the scope of<0.05 N and>2.3 N?1 in the region of<0.6 N for tangential force with ultra-low response time of 3.1 ms.In addition,multi-functional detection in human body monitoring was employed with single sensing cell and the sensor array was integrated into a robotic arm for objects grasping control,indicating the capacities in intelligent robot applications.
基金supported by the Open Foundation of Graduate Innovation Base(Laboratory)of Nanjing University of Aeronautics and Astronautics (No.kfjj20170512)the National Natural Science Foundation of China(No. 51175263)
文摘A six-axis force sensor with parallel 8/4-4 structure is introduced and its measurement principle is analyzed.Based on condition numbers of Jacobian matrix spectral norm of the sensor,the relationship between the force and moment isotropy and some structural parameters is deduced.Orthogonal test methods are used to determine the degree of primary and secondary factors that have significant effect on sensor characteristics.Furthermore,the relationship between each performance index and the structural parameters of the sensor is analyzed by the method of the atlas,which lays a foundation for structural optimization design of the force sensor.
基金supported in part by the National Natural Science Foundation of China(No.51405237)。
文摘Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanisms are taken as examples.By analyzing the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,a new method for establishing the dynamic equation of the sensing mechanism is proposed.Firstly,based on the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,the expression of the branch rod length is obtained.The inherent constraint relationship between the branches is excavated and the branch coordination closed chain of the“12-6”configuration is constructed.The output coordination equation of the sensing mechanism is successfully derived.Secondly,the dynamic equations of“12-4”and“12-6”configurations are constructed by the Newton-Euler method,and the forward decoupling equations of the two configurations are solved by combining the dynamic equations and the output coordination equations.Finally,the virtual prototype experiment is carried out,and the maximum reference errors of the forward decoupling equations of the two configuration sensing mechanisms are 4.23%and 6.53%,respectively.The results show that the proposed method is effective and feasible,and meets the real-time requirements.
基金supported by the Fundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics(No.kfjj20190308)the Fundamental Research Funds for the Central Universities
文摘This paper presents the isotropic optimization of a Stewart-type six-component force sensor. First,the static model of the sensor is built by the screw theory and the forward isotropy indexes and the inverse isotropy indexes are further presented. Second,a comprehensive evaluation function is established to evaluate the isotropic performance of the sensor. By compromising all the isotropy indexes and solving the extreme value of the function,the sensor optimization process is completed and an optimal solution of a set of sensor structure parameters is obtained. Finally,the design of the components and the assembly of the prototype are established by 3D modeling software Pro-E. The verification of the isotropic performance of the sensor is conducted by the finite element analysis software ANSYS. The results obtained by our research can provide useful reference to the isotropic performance evaluation and structure design of the stewart-type six-component force sensor.
文摘An optic-fiber sensor system for measuring distributed forces is presented. The sensor system chooses high-birefringent fiber as sensing e-iement. Based on coupling effects of polarization modes in high-birefringent fiber, the distribution of the force points along the sensing fiber can be measured by detecting mode couplings in the fiber which are caused by external force disturbance. The location and magnitude of the measured forces are determined by a heterodyne interferometry and the technique of optic path scanning. The spatial resolution of the sensor system is better than 0. 15m for a 50m testing fiber.
文摘A cutting force measuring device is developed which is composed of a common tool shank and an optical fibre sensor. The sensor is mounted at the rear of the shank and the deformation of the shank caused by cutting force is detected as the measurement of cutting force. The device possesses good adaptability to workshop conditions as well as satisfying static and dynamic performances.
基金Supported by the National Nature Science Foundation of China(No.51301163)the Important Direction Program of Chinese Academy of Sciences(No.XDA03040200)
文摘Oxygen control technology is a critical issue for compatibility of candidate structural materials with liquid lead-bismuth eutectic(LBE) in accelerator driven systems. Performances of a self-developed Pt/air sensor and another one from Karlsruher Institute of Technology(KIT) were tested in stagnant oxygen-saturated liquid LBE.Calibrations showed that the trend and values of corrected electromotive force(EMF) of the self-developed sensor, with a bias voltage of 20 mV, were consistent with theoretical results above 425℃, and similar results were obtained in cross-calibration test with EMF value of KIT sensor as reference. In stability test at 450℃ for 100 hours, the KIT sensor performed better than the self-developed one, which showed signal fluctuations.Both sensors exhibited quick response to temperature variations in the responsiveness test.
文摘A drive signal frequency-lock method for quartz angular-rate sensor is presented. The calculation result obtained by the equivalent volume force analytic method indicated that when taking the inherent frequency of the drive tines as the drive signal frequency the phase of the reference vibration is 90° behind that of the drive signal, and the square of amplitude is less than that of the maximal amplitude by 1/(4Q~2_d) merely. The curves derived from the finite element analytic method proved that near the inherent frequency the phase shift of the feedback voltage is identical to that of the reference vibration, and the amplitude is proportional to that of the reference vibration, and the phase shift is linear approximatively with the frequency shift. The frequency shift could be calculated according to the phase shift obtained by quadrature correlation detection, so the drive signal frequency could be locked at the inherent frequency of the drive tines by means of iteration.