Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic ...Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity.展开更多
We present the angular distribution of the ejected electron for single ionization of He by fast proton impact.A fourbody formalism of the three-Coulomb wave is applied to calculate the triple differential cross sectio...We present the angular distribution of the ejected electron for single ionization of He by fast proton impact.A fourbody formalism of the three-Coulomb wave is applied to calculate the triple differential cross sections at several impact energies in the scattering,perpendicular and azimuthal planes.Moreover,the three-body formalism of three-Coulomb,two-Coulomb and first Born approximation models has also been used to study the many-body effect on electron emission and the validity of the models.In the three-Coulomb wave model,the final state wave function incorporates distortion due to the three-body mutual Coulombic interaction.In this formalism,we use an uncorrelated and correlated Born initial state,which consists of a plane wave for the incoming projectile times a two-electron bound state wavefunction of the helium atom representing the 1s^(2)(1S)state.But,in the case of the three-body formalism,the initial state wavefunction consists of a long-range Coulomb distortion for the incoming projectile and one active electron of the He atom described by the Roothaan–Hartree–Fock wavefunction.The structure with a single or two peaks with unequal intensity is observed in the angular distributions of the triple differential cross sections for the different kinematic conditions.In addition,the influence of static electron correlations is investigated using different bound state wavefunctions for the ground state of the He target.In the four-body formalism,the present computations are very fast by reducing a nine-dimensional integral to a two-dimensional real integral.Despite the simplicity and speed of the proposed quadrature,the comparison shows that the obtained results are in reasonable agreement with the experiment and are compatible with those of other theories.展开更多
The electron-impact single ionization cross section for W8+ion has been calculated using flexible atomic code,employing the level-to-level distorted-wave approximation.This calculations takes into account contribution...The electron-impact single ionization cross section for W8+ion has been calculated using flexible atomic code,employing the level-to-level distorted-wave approximation.This calculations takes into account contributions form both direct ionization(DI)and excitation autoionization(EA).However,the theoretical predictions,based solely on the ground state,tends to underestimate the experimental values.This discrepancy can be mitigated by incorporation contributions from excited states.We extended the theoretical analysis,including the contributions from the long-lived metastable states with lifetimes exceeding 1.5×10-5 s.We employed two statistical models to predict the fraction of ground state ions in the parent ion beam.Assuming a 79%fraction of parent ions in ground configuration,the experiment measurements align with the predictions.Furthermore we derived the theoretical cross-section for the ground state as correlated plasma rate coefficients,and compared it with existing data.Despite the uncertainty in our calculations,our results are still acceptable.展开更多
Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C,...Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C, OC) of the triatomic molecule carbonyl sulfide(OCS) can survive strong 800 nm or 400 nm laser fields in high Rydberg states. The dependence of parent and fragment RSE yields on laser intensity and ellipticity is investigated in both laser fields, and the results are compared with those for strong-field ionization. Distinctly different tendencies for laser intensity and ellipticity are observed for fragment RSE compared with the corresponding ions. The mechanisms of RSE and strong-field ionization of OCS molecules in different laser fields are discussed based on the experimental results. Our study sheds some light on the strong-field excitation and ionization of molecules irradiated by femtosecond NIR and UV laser fields.展开更多
We study the above-threshold ionization(ATI)process of atoms exposed to fundamental and high-frequency lasers with arbitrary ellipticity by applying the frequency-domain theory.It is found that the angular-resolved AT...We study the above-threshold ionization(ATI)process of atoms exposed to fundamental and high-frequency lasers with arbitrary ellipticity by applying the frequency-domain theory.It is found that the angular-resolved ATI spectrum is sensitive to ellipticities of two lasers and emitted angles of the photoelectron.Particularly for the photon energy of the highfrequency laser more than atomic ionization potential,the width of plateau tends to a constant with increasing ellipticity of fundamental field,the dip structure disappears with increasing ellipticity of the high-frequency field.With the help of the quantum channel analysis,it is shown that the angular distribution depends mainly on the ellipticity of high-frequency field in the case that its frequency is high.Moreover,one can see that the maximal and minimal energies in quantum numerical results are in good agreement with the classical prediction.Our investigation may provide theoretical support for experimental research on polarization control of ionization in elliptically polarized two-color laser fields.展开更多
We investigate propagation of dust ion acoustic solitary wave(DIASW)in a multicomponent dusty plasma with adiabatic ions,superthermal electrons,and stationary dust.The reductive perturbation method is employed to deri...We investigate propagation of dust ion acoustic solitary wave(DIASW)in a multicomponent dusty plasma with adiabatic ions,superthermal electrons,and stationary dust.The reductive perturbation method is employed to derive the damped Korteweg-de Vries(DKdV)equation which describes DIASW.The result reveals that the adiabaticity of ions significantly modifies the basic features of the DIASW.The ionization effect makes the solitary wave grow,while collisions reduce the growth rate and even lead to the damping.With the increases in ionization cross sectionΔσ/σ_(0),ion-to-electron density ratioδ_(ie)and superthermal electrons parameterκ,the effect of ionization on DIASW enhances.展开更多
The double ionization process of molecules driven by co-rotating two-color circularly polarized fields is investigated with a three-dimensional classical ensemble model. Numerical results indicate that a considerable ...The double ionization process of molecules driven by co-rotating two-color circularly polarized fields is investigated with a three-dimensional classical ensemble model. Numerical results indicate that a considerable part of the sequential double ionization(DI) events of molecules occur through internal collision double ionization(ICD), and the ICD recollision mechanism is significantly different from that in non-sequential double ionization(NSDI). By analyzing the results of internuclear distances R = 5 a.u. and 2 a.u., these two recollision mechanisms are studied in depth. It is found that the dynamic behaviors of the recollision mechanisms of NSDI and ICD are similar. For NSDI, the motion range of electrons after the ionization is relatively large, and the electrons will return to the core after a period of time. In the ICD process,electrons will rotate around the parent ion before ionization, and the distance of the electron motion is relatively small. After a period of time, the electrons will come back to the core and collide with another electron. Furthermore, the molecular internuclear distance has a significant effect on the electron dynamic behavior of the two ionization mechanisms. This study will help to understand the multi-electron ionization process of complex systems.展开更多
The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))a...The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))are measured by employing an ion imaging mass spectrometer and two ion-pair dissociation channels(C^(+)+O^(+)and C^(2+)+O^(+))are identified.The absolute cross sections for producing individual ions and their total,as well as for the ion-pair dissociation channels are obtained by normalizing the data of CO^(+)to that of Ar^(+)from CO-Ar mixture target with a fixed 1:1 ratio.The overall errors are evaluated by considering various kinds of uncertainties.A comprehensive comparison is made with the available data,which shows a good agreement with each other over the energy ranges that are overlapped.This work presents new cross-section data with electron energies above 1000 eV.展开更多
Electron dynamics during non-sequential double ionization(NSDI) is one of the most attractive areas of research in the field of laser–atom or laser–molecule interaction. Based on the classic two-dimensional model, w...Electron dynamics during non-sequential double ionization(NSDI) is one of the most attractive areas of research in the field of laser–atom or laser–molecule interaction. Based on the classic two-dimensional model, we study the process of NSDI of argon atoms driven by a few-cycle orthogonal two-color laser field composed of 800 nm and 400 nm laser pulses. By changing the relative phase of the two laser pulses, a localized enhancement of NSDI yield is observed at 0.5πand 1.5π, which could be attributed to a rapid and substantial increase in the number of electrons returning to the parent ion within extremely short time intervals at these specific phases. Through the analysis of the electron–electron momentum correlations within different time windows of NSDI events and the angular distributions of emitted electrons in different channels, we observe a more pronounced electron–electron correlation phenomenon in the recollision-induced ionization(RII) channel. This is attributed to the shorter delay time in the RII channel.展开更多
By numerically solving the two-dimensional(2D)time-dependent Schrödinger equation(TDSE),we present photoelectron momentum distributions(PMDs)and photoelectron angular distributions(PADs)of symmetric(H_(2)^(+))and...By numerically solving the two-dimensional(2D)time-dependent Schrödinger equation(TDSE),we present photoelectron momentum distributions(PMDs)and photoelectron angular distributions(PADs)of symmetric(H_(2)^(+))and asymmetric(HeH^(2+))molecular ions in circularly polarized(CP)laser pulses.By adjusting the laser wavelength,two circumstances of resonance excitation and direct ionization were considered.The ionization mechanism of the resonance excitation was mainly investigated.The results show that the PMDs of H_(2)^(+) and HeH^(2+) in the y-direction gradually increase with increasing intensity,and the number of PMDs lobes is in good agreement with the results predicted by the ultrafast ionization model.In the resonance excitation scenario,the PMDs of are dominated by two-photon ionization,whereas the PMDs of HeH_(2)^(+) are dominated by three-photon ionization.Furthermore,the PMDs of HeH^(2+)are stronger in the resonance excitation scenario than those of H_(2)^(+),which can be explained by the time-dependent population of electrons.In addition,the molecular structure is clearly imprinted onto the PMDs.展开更多
Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)la...Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)laser field is theoretically studied.And the dynamics in two typical collision pathways,recollision-impact-ionization(RII)and recollisionexcitation with subsequent ionization(RESI),is systematically explored.Our results reveal that the V-shaped structure in the correlated momentum distribution is mainly caused by the RII mechanism when the relative amplitude of the OTC laser field is zero,and the first ionized electrons will quickly skim through the nucleus and share few energy with the second electron.As the relative amplitude increases,the V-shaped structure gradually disappears and electrons are concentrated on the diagonal in the electron correlation spectrum,indicating that the energy sharing after electrons collision is symmetric for OTC laser fields with large relative amplitudes.Our studies show that changing the relative amplitude of the OTC laser field can efficiently control the electron–electron collisions and energy exchange efficiency in the NSDI process.展开更多
Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast ele...Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast electronic processes on the attosecond timescale, including photoionization and tunneling ionization. These interrogation techniques include the attosecond streak camera, the reconstruction of attosecond beating by interference of two-photon transitions, and the attoclock. While the former two are usually employed to study photoionization processes, the latter is typically used to investigate tunneling ionization. In this review, we briefly overview these timing techniques towards an attosecond temporal resolution of ionization processes in atoms and molecules under intense laser fields. In particular, we review the backpropagation method, which is a novel hybrid quantum-classical approach towards the full characterization of tunneling ionization dynamics. Continued advances in the interrogation techniques promise to pave the pathway towards the exploration of ever faster dynamical processes on an ever shorter timescale.展开更多
Single-photon sensors are novel devices with extremely high single-photon sensitivity and temporal resolution.However,these advantages also make them highly susceptible to noise.Moreover,single-photon cameras face sev...Single-photon sensors are novel devices with extremely high single-photon sensitivity and temporal resolution.However,these advantages also make them highly susceptible to noise.Moreover,single-photon cameras face severe quantization as low as 1 bit/frame.These factors make it a daunting task to recover high-quality scene information from noisy single-photon data.Most current image reconstruction methods for single-photon data are mathematical approaches,which limits information utilization and algorithm performance.In this work,we propose a hybrid information enhancement model which can significantly enhance the efficiency of information utilization by leveraging attention mechanisms from both spatial and channel branches.Furthermore,we introduce a structural feature enhance module for the FFN of the transformer,which explicitly improves the model's ability to extract and enhance high-frequency structural information through two symmetric convolution branches.Additionally,we propose a single-photon data simulation pipeline based on RAW images to address the challenge of the lack of single-photon datasets.Experimental results show that the proposed method outperforms state-of-the-art methods in various noise levels and exhibits a more efficient capability for recovering high-frequency structures and extracting information.展开更多
Coherent electronic dynamics are of great significance in photo-induced processes and molecular magnetism.We theoretically investigate electronic dynamics of triatomic molecule H_(3)^(2+) by circularly polarized pulse...Coherent electronic dynamics are of great significance in photo-induced processes and molecular magnetism.We theoretically investigate electronic dynamics of triatomic molecule H_(3)^(2+) by circularly polarized pulses,including electron density distributions,induced electronic currents,and ultrafast magnetic field generation.By comparing the results of the coherent resonant excitation and direct ionization,we found that for the coherent resonant excitation,the electron is localized and the coherent electron wave packet moves periodically between three protons,which can be attributed to the coherent superposition of the ground A′state and excited E+state.Whereas,for the direct single-photon ionization,the induced electronic currents mainly come from the free electron in the continuum state.It is found that there are differences in the intensity,phase,and frequency of the induced current and the generated magnetic field.The scheme allows one to control the induced electronic current and the ultrafast magnetic field generation.展开更多
The electron swarm parameters including the density-normalized effective ionization coefficients(α-η)/N and the electron drift velocities V e are calculated for a gas mixture of CF3I with N2 and CO2 by solving the...The electron swarm parameters including the density-normalized effective ionization coefficients(α-η)/N and the electron drift velocities V e are calculated for a gas mixture of CF3I with N2 and CO2 by solving the Boltzmann equation in the condition of a steady-state Townsend(SST) experiment.The overall density-reduced electric field strength is from 100 Td to 1000 Td(1 Td = 10-17V·cm2),while the CF3I content k in the gas mixture can be varied over the range from 0% to 100%.From the variation of(αη)/N with the CF3I mixture ratio k,the limiting field strength(E/N) lim for each CF3I concentration is derived.It is found that for the mixtures with 70% CF3I,the values of(E/N) lim are essentially the same as that for pure SF 6.Additionally,the global warming potential(GWP) and the liquefaction temperature of the gas mixtures are also taken into account to evaluate the possibility of application in the gas insulation of power equipment.展开更多
The collection efficiency of monitor parallel plate ionization chambers is the main uncertainty in the beam control of pencil beam scanning systems.Existing calculation methods for collection efficiency in photon or p...The collection efficiency of monitor parallel plate ionization chambers is the main uncertainty in the beam control of pencil beam scanning systems.Existing calculation methods for collection efficiency in photon or passive scattering proton systems have not considered the characteristics of non-uniform charge density in pencil beam scanning systems.In this study,Boag’s theory was applied to a proton pencil beam scanning system.The transverse distribution of charge density in the ionization chamber was considered to be a Gaussian function and an analytical solution was derived to calculate collection efficiency in the beam spot area.This calculation method is called the integral method and it was used to investigate the effects of beam parameters on collection efficiency.It was determined that collection efficiency is positively correlated with applied voltage,beam size,and beam energy,but negatively correlated with beam current intensity.Additionally,it was confirmed that collection efficiency is improved when the air filling the monitor parallel plate ionization chamber is replaced with nitrogen.展开更多
In this study,we investigated the motion,shape,and delayed radiation intensity of a radioactive cloud by establishing a volume-source model of delayed radiation after high-altitude nuclear explosions.Then,the spatial ...In this study,we investigated the motion,shape,and delayed radiation intensity of a radioactive cloud by establishing a volume-source model of delayed radiation after high-altitude nuclear explosions.Then,the spatial distribution of electron number density at different moments on the north side of the explosion point generated by delayed γ-rays and delayed β-rays from the radioactive cloud under the influence of the geomagnetic field was calculated by solving chemical reaction kinetics equations.The impact of radio communication in the different frequency bands on the process of atmospheric ionization was also studied.The numerical results of the high-altitude nuclear explosion (120 km high and with a 1 megaton equivalent at 40°N latitude) indicated that the peak of electron number density ionized delayed γ-rays is located at a height of approximately 100 km and that of electron number density ionized delayed β-rays is about 90 km high.After 1 min of explosion,the radio communication in the medium frequency (MF) and high-frequency (HF)bands was completely interrupted,and the energy attenuation of the radio wave in the very high-frequency (VHF)band was extremely high.Five minutes later,the VHF radio communication was basically restored,but the energy attenuation in the HF band was still high.After 30 min,theVHF radio communication returned to normal,but its influence on the HF and MF radio communication continued.展开更多
The above-threshold ionization of argon in an intense 70-fs,400-nm linearly polarized laser pulse has been investigated by the velocity map imaging techniques,combined with an attosecond-resolution quantum wave packet...The above-threshold ionization of argon in an intense 70-fs,400-nm linearly polarized laser pulse has been investigated by the velocity map imaging techniques,combined with an attosecond-resolution quantum wave packet dynamics method.There is a quantitative agreement in all dominant features between the experiment and the theory.Moreover,a peak-splitting phenomenon in the first energy peak has been observed at high pulse intensity.Further,through the theoretical analysis,an ac Stark splitting with evident resonant and nonresonant ionization pathways has been found to be the physical reason for the experimental observations.展开更多
Above-threshold ionization (ATI) of a hydrogen atom exposed to chirped laser fields is investigated theoretically by solving the time-dependent Schrodinger equation. By comparing the energy spectra, the two-dimensio...Above-threshold ionization (ATI) of a hydrogen atom exposed to chirped laser fields is investigated theoretically by solving the time-dependent Schrodinger equation. By comparing the energy spectra, the two-dimensional momentum spectra, and the angular distributions of photoelectron for the laser pulses with different chirp rates, we show a very clear chirp dependence both in the multiphoton and tunneling ionization processes but no chirp dependence in the single-photon ionization. We find that the chirp dependence in the multiphoton ionization based ATI can be attributed to the excited bound states. In the single-photon and tunneling ionization regimes, the electron can be removed directly from the ground state and thus the excited states may not be very important. It indicates that the chirp dependence in the tunneling ionization based ATI processes is mainly due to the laser pulses with different chirp rates,展开更多
Ionization and dissociation of linear triatomic molecules, carbon dioxide, are studied in 50-fs 800-nm strong laser fields using time-of-flight mass spectrometer. The yields of double charged ions CO2^2+ and various ...Ionization and dissociation of linear triatomic molecules, carbon dioxide, are studied in 50-fs 800-nm strong laser fields using time-of-flight mass spectrometer. The yields of double charged ions CO2^2+ and various fragment ions(CO^+,O^n+, and C^n+(n = 1, 2)) are measured as a function of ellipticity of laser polarization in the intensity range from 5.0 ×10^13W/cm2 to 6.0 × 10^14W/cm^2. The results demonstrate that non-sequential double ionization, which is induced by laser-driven electron recollision, dominates double ionization of CO2 in the strong IR laser field with intensity lower than2.0 × 10^14W/cm^2. The electron recollision could also have contribution in strong-field multiple ionization and formation of fragments of CO2 molecules. The present study indicates that the intensity and ellipticity dependence of ions yields can be used to probe the complex dynamics of strong-field ionization/dissociation of polyatomic molecules.展开更多
基金the National Natural Science Foundation of China(Grant No.52076028).
文摘Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity.
基金Project supported by the Science and Engineering Research Board(SERB),New Delhi,India(Grant No.CRG/2022/001668).
文摘We present the angular distribution of the ejected electron for single ionization of He by fast proton impact.A fourbody formalism of the three-Coulomb wave is applied to calculate the triple differential cross sections at several impact energies in the scattering,perpendicular and azimuthal planes.Moreover,the three-body formalism of three-Coulomb,two-Coulomb and first Born approximation models has also been used to study the many-body effect on electron emission and the validity of the models.In the three-Coulomb wave model,the final state wave function incorporates distortion due to the three-body mutual Coulombic interaction.In this formalism,we use an uncorrelated and correlated Born initial state,which consists of a plane wave for the incoming projectile times a two-electron bound state wavefunction of the helium atom representing the 1s^(2)(1S)state.But,in the case of the three-body formalism,the initial state wavefunction consists of a long-range Coulomb distortion for the incoming projectile and one active electron of the He atom described by the Roothaan–Hartree–Fock wavefunction.The structure with a single or two peaks with unequal intensity is observed in the angular distributions of the triple differential cross sections for the different kinematic conditions.In addition,the influence of static electron correlations is investigated using different bound state wavefunctions for the ground state of the He target.In the four-body formalism,the present computations are very fast by reducing a nine-dimensional integral to a two-dimensional real integral.Despite the simplicity and speed of the proposed quadrature,the comparison shows that the obtained results are in reasonable agreement with the experiment and are compatible with those of other theories.
基金Project supported by the National Natural Science Foundation of China(Grant No.12364034)the National Key Research and Development Program of China(Grant No.2022YFA1602501)the Science and Technology Project of Gansu Province,China(Grant No.23YFFA0074).
文摘The electron-impact single ionization cross section for W8+ion has been calculated using flexible atomic code,employing the level-to-level distorted-wave approximation.This calculations takes into account contributions form both direct ionization(DI)and excitation autoionization(EA).However,the theoretical predictions,based solely on the ground state,tends to underestimate the experimental values.This discrepancy can be mitigated by incorporation contributions from excited states.We extended the theoretical analysis,including the contributions from the long-lived metastable states with lifetimes exceeding 1.5×10-5 s.We employed two statistical models to predict the fraction of ground state ions in the parent ion beam.Assuming a 79%fraction of parent ions in ground configuration,the experiment measurements align with the predictions.Furthermore we derived the theoretical cross-section for the ground state as correlated plasma rate coefficients,and compared it with existing data.Despite the uncertainty in our calculations,our results are still acceptable.
基金Project supported by the National Key Program for S&T Research and Development(Grant No.2019YFA0307700)the National Natural Science Foundation of China(Grant Nos.12174148,11874179,12074144,and 12074146)。
文摘Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C, OC) of the triatomic molecule carbonyl sulfide(OCS) can survive strong 800 nm or 400 nm laser fields in high Rydberg states. The dependence of parent and fragment RSE yields on laser intensity and ellipticity is investigated in both laser fields, and the results are compared with those for strong-field ionization. Distinctly different tendencies for laser intensity and ellipticity are observed for fragment RSE compared with the corresponding ions. The mechanisms of RSE and strong-field ionization of OCS molecules in different laser fields are discussed based on the experimental results. Our study sheds some light on the strong-field excitation and ionization of molecules irradiated by femtosecond NIR and UV laser fields.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12104285,12074240,12204135,12374260,12264013,12204136,92250303,and 12074418)the Guangdong Basicand Applied Basic Research Foundation (Grant No.2022A1515011742)+5 种基金the Special Scientific Research Program supported by the Shaanxi Education Department (Grant No.22JK0423)the Natural Science Basic Research Program of Shaanxi Province of China (Grant Nos.2023-JC-QN-0085 and 2023-JC-QN-0267)the Hainan Provincial Natural Science Foundation of China (Grant Nos.122CXTD504,123MS002,123QN179,123QN180,and 122QN217)the Sino-German Mobility Programme (Grant No.M-0031)the Xi’an Aeronautical Institute 2023 Innovation and Entrepreneurship Training Program for college students (Grant No.S202311736036)the Course Ideological and Political Education Program (Grant No.23ZLGC5030)。
文摘We study the above-threshold ionization(ATI)process of atoms exposed to fundamental and high-frequency lasers with arbitrary ellipticity by applying the frequency-domain theory.It is found that the angular-resolved ATI spectrum is sensitive to ellipticities of two lasers and emitted angles of the photoelectron.Particularly for the photon energy of the highfrequency laser more than atomic ionization potential,the width of plateau tends to a constant with increasing ellipticity of fundamental field,the dip structure disappears with increasing ellipticity of the high-frequency field.With the help of the quantum channel analysis,it is shown that the angular distribution depends mainly on the ellipticity of high-frequency field in the case that its frequency is high.Moreover,one can see that the maximal and minimal energies in quantum numerical results are in good agreement with the classical prediction.Our investigation may provide theoretical support for experimental research on polarization control of ionization in elliptically polarized two-color laser fields.
基金supported by the Project of Scientific and Technological Innovation Base of Jiangxi Province,China (Grant No.20203CCD46008)the Key R&D Plan of Jiangxi Province,China (Grant No.20223BBH80006)+1 种基金the Natural Science Foundation of Jiangxi Province,China (Grant No.20212BAB211025)the Jiangxi Province Key Laboratory of Fusion and Information Control (Grant No.20171BCD40005)。
文摘We investigate propagation of dust ion acoustic solitary wave(DIASW)in a multicomponent dusty plasma with adiabatic ions,superthermal electrons,and stationary dust.The reductive perturbation method is employed to derive the damped Korteweg-de Vries(DKdV)equation which describes DIASW.The result reveals that the adiabaticity of ions significantly modifies the basic features of the DIASW.The ionization effect makes the solitary wave grow,while collisions reduce the growth rate and even lead to the damping.With the increases in ionization cross sectionΔσ/σ_(0),ion-to-electron density ratioδ_(ie)and superthermal electrons parameterκ,the effect of ionization on DIASW enhances.
基金the National Key Research and Development Program of China (Grant No.2019YFA0307700)the National Natural Science Foundation of China (Grant Nos.12074145 and 11975012)+1 种基金Jilin Provincial Research Foundation for Basic Research,China (Grant No.20220101003JC)Jilin Provincial Education Department (Grant No.JJKH20230284KJ)。
文摘The double ionization process of molecules driven by co-rotating two-color circularly polarized fields is investigated with a three-dimensional classical ensemble model. Numerical results indicate that a considerable part of the sequential double ionization(DI) events of molecules occur through internal collision double ionization(ICD), and the ICD recollision mechanism is significantly different from that in non-sequential double ionization(NSDI). By analyzing the results of internuclear distances R = 5 a.u. and 2 a.u., these two recollision mechanisms are studied in depth. It is found that the dynamic behaviors of the recollision mechanisms of NSDI and ICD are similar. For NSDI, the motion range of electrons after the ionization is relatively large, and the electrons will return to the core after a period of time. In the ICD process,electrons will rotate around the parent ion before ionization, and the distance of the electron motion is relatively small. After a period of time, the electrons will come back to the core and collide with another electron. Furthermore, the molecular internuclear distance has a significant effect on the electron dynamic behavior of the two ionization mechanisms. This study will help to understand the multi-electron ionization process of complex systems.
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFA1602502)the National Natural Science Foundation of China (Grant No.12127804)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDB34000000)。
文摘The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))are measured by employing an ion imaging mass spectrometer and two ion-pair dissociation channels(C^(+)+O^(+)and C^(2+)+O^(+))are identified.The absolute cross sections for producing individual ions and their total,as well as for the ion-pair dissociation channels are obtained by normalizing the data of CO^(+)to that of Ar^(+)from CO-Ar mixture target with a fixed 1:1 ratio.The overall errors are evaluated by considering various kinds of uncertainties.A comprehensive comparison is made with the available data,which shows a good agreement with each other over the energy ranges that are overlapped.This work presents new cross-section data with electron energies above 1000 eV.
基金partly supported by the National Natural Science Foundation of China (Grant Nos. 12034008,12250003, and 11727810)the Program of Introducing Talents of Discipline to Universities 111 Project (B12024)。
文摘Electron dynamics during non-sequential double ionization(NSDI) is one of the most attractive areas of research in the field of laser–atom or laser–molecule interaction. Based on the classic two-dimensional model, we study the process of NSDI of argon atoms driven by a few-cycle orthogonal two-color laser field composed of 800 nm and 400 nm laser pulses. By changing the relative phase of the two laser pulses, a localized enhancement of NSDI yield is observed at 0.5πand 1.5π, which could be attributed to a rapid and substantial increase in the number of electrons returning to the parent ion within extremely short time intervals at these specific phases. Through the analysis of the electron–electron momentum correlations within different time windows of NSDI events and the angular distributions of emitted electrons in different channels, we observe a more pronounced electron–electron correlation phenomenon in the recollision-induced ionization(RII) channel. This is attributed to the shorter delay time in the RII channel.
基金Project supported by the Natural Science Foundation of Jilin Province(Grant No.20220101010JC)the National Natural Science Foundation of China(Grant No.12074146)。
文摘By numerically solving the two-dimensional(2D)time-dependent Schrödinger equation(TDSE),we present photoelectron momentum distributions(PMDs)and photoelectron angular distributions(PADs)of symmetric(H_(2)^(+))and asymmetric(HeH^(2+))molecular ions in circularly polarized(CP)laser pulses.By adjusting the laser wavelength,two circumstances of resonance excitation and direct ionization were considered.The ionization mechanism of the resonance excitation was mainly investigated.The results show that the PMDs of H_(2)^(+) and HeH^(2+) in the y-direction gradually increase with increasing intensity,and the number of PMDs lobes is in good agreement with the results predicted by the ultrafast ionization model.In the resonance excitation scenario,the PMDs of are dominated by two-photon ionization,whereas the PMDs of HeH_(2)^(+) are dominated by three-photon ionization.Furthermore,the PMDs of HeH^(2+)are stronger in the resonance excitation scenario than those of H_(2)^(+),which can be explained by the time-dependent population of electrons.In addition,the molecular structure is clearly imprinted onto the PMDs.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12204132 and 12304376)Excellent Youth Science Foundation of Shandong Province (Overseas) (Grant No.2022HWYQ-073)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.HIT.OCEF.2022042)Natural Science Foundation of Shandong Province (Grant No.ZR2023QA075)。
文摘Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)laser field is theoretically studied.And the dynamics in two typical collision pathways,recollision-impact-ionization(RII)and recollisionexcitation with subsequent ionization(RESI),is systematically explored.Our results reveal that the V-shaped structure in the correlated momentum distribution is mainly caused by the RII mechanism when the relative amplitude of the OTC laser field is zero,and the first ionized electrons will quickly skim through the nucleus and share few energy with the second electron.As the relative amplitude increases,the V-shaped structure gradually disappears and electrons are concentrated on the diagonal in the electron correlation spectrum,indicating that the energy sharing after electrons collision is symmetric for OTC laser fields with large relative amplitudes.Our studies show that changing the relative amplitude of the OTC laser field can efficiently control the electron–electron collisions and energy exchange efficiency in the NSDI process.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.92150105,11834004,12227807,and 12241407)the Science and Technology Commission of Shanghai Municipality (Grant No.21ZR1420100)。
文摘Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast electronic processes on the attosecond timescale, including photoionization and tunneling ionization. These interrogation techniques include the attosecond streak camera, the reconstruction of attosecond beating by interference of two-photon transitions, and the attoclock. While the former two are usually employed to study photoionization processes, the latter is typically used to investigate tunneling ionization. In this review, we briefly overview these timing techniques towards an attosecond temporal resolution of ionization processes in atoms and molecules under intense laser fields. In particular, we review the backpropagation method, which is a novel hybrid quantum-classical approach towards the full characterization of tunneling ionization dynamics. Continued advances in the interrogation techniques promise to pave the pathway towards the exploration of ever faster dynamical processes on an ever shorter timescale.
文摘Single-photon sensors are novel devices with extremely high single-photon sensitivity and temporal resolution.However,these advantages also make them highly susceptible to noise.Moreover,single-photon cameras face severe quantization as low as 1 bit/frame.These factors make it a daunting task to recover high-quality scene information from noisy single-photon data.Most current image reconstruction methods for single-photon data are mathematical approaches,which limits information utilization and algorithm performance.In this work,we propose a hybrid information enhancement model which can significantly enhance the efficiency of information utilization by leveraging attention mechanisms from both spatial and channel branches.Furthermore,we introduce a structural feature enhance module for the FFN of the transformer,which explicitly improves the model's ability to extract and enhance high-frequency structural information through two symmetric convolution branches.Additionally,we propose a single-photon data simulation pipeline based on RAW images to address the challenge of the lack of single-photon datasets.Experimental results show that the proposed method outperforms state-of-the-art methods in various noise levels and exhibits a more efficient capability for recovering high-frequency structures and extracting information.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074146 and 12074142)。
文摘Coherent electronic dynamics are of great significance in photo-induced processes and molecular magnetism.We theoretically investigate electronic dynamics of triatomic molecule H_(3)^(2+) by circularly polarized pulses,including electron density distributions,induced electronic currents,and ultrafast magnetic field generation.By comparing the results of the coherent resonant excitation and direct ionization,we found that for the coherent resonant excitation,the electron is localized and the coherent electron wave packet moves periodically between three protons,which can be attributed to the coherent superposition of the ground A′state and excited E+state.Whereas,for the direct single-photon ionization,the induced electronic currents mainly come from the free electron in the continuum state.It is found that there are differences in the intensity,phase,and frequency of the induced current and the generated magnetic field.The scheme allows one to control the induced electronic current and the ultrafast magnetic field generation.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51177101)
文摘The electron swarm parameters including the density-normalized effective ionization coefficients(α-η)/N and the electron drift velocities V e are calculated for a gas mixture of CF3I with N2 and CO2 by solving the Boltzmann equation in the condition of a steady-state Townsend(SST) experiment.The overall density-reduced electric field strength is from 100 Td to 1000 Td(1 Td = 10-17V·cm2),while the CF3I content k in the gas mixture can be varied over the range from 0% to 100%.From the variation of(αη)/N with the CF3I mixture ratio k,the limiting field strength(E/N) lim for each CF3I concentration is derived.It is found that for the mixtures with 70% CF3I,the values of(E/N) lim are essentially the same as that for pure SF 6.Additionally,the global warming potential(GWP) and the liquefaction temperature of the gas mixtures are also taken into account to evaluate the possibility of application in the gas insulation of power equipment.
文摘The collection efficiency of monitor parallel plate ionization chambers is the main uncertainty in the beam control of pencil beam scanning systems.Existing calculation methods for collection efficiency in photon or passive scattering proton systems have not considered the characteristics of non-uniform charge density in pencil beam scanning systems.In this study,Boag’s theory was applied to a proton pencil beam scanning system.The transverse distribution of charge density in the ionization chamber was considered to be a Gaussian function and an analytical solution was derived to calculate collection efficiency in the beam spot area.This calculation method is called the integral method and it was used to investigate the effects of beam parameters on collection efficiency.It was determined that collection efficiency is positively correlated with applied voltage,beam size,and beam energy,but negatively correlated with beam current intensity.Additionally,it was confirmed that collection efficiency is improved when the air filling the monitor parallel plate ionization chamber is replaced with nitrogen.
文摘In this study,we investigated the motion,shape,and delayed radiation intensity of a radioactive cloud by establishing a volume-source model of delayed radiation after high-altitude nuclear explosions.Then,the spatial distribution of electron number density at different moments on the north side of the explosion point generated by delayed γ-rays and delayed β-rays from the radioactive cloud under the influence of the geomagnetic field was calculated by solving chemical reaction kinetics equations.The impact of radio communication in the different frequency bands on the process of atmospheric ionization was also studied.The numerical results of the high-altitude nuclear explosion (120 km high and with a 1 megaton equivalent at 40°N latitude) indicated that the peak of electron number density ionized delayed γ-rays is located at a height of approximately 100 km and that of electron number density ionized delayed β-rays is about 90 km high.After 1 min of explosion,the radio communication in the medium frequency (MF) and high-frequency (HF)bands was completely interrupted,and the energy attenuation of the radio wave in the very high-frequency (VHF)band was extremely high.Five minutes later,the VHF radio communication was basically restored,but the energy attenuation in the HF band was still high.After 30 min,theVHF radio communication returned to normal,but its influence on the HF and MF radio communication continued.
基金Project supported by the National Natural Science Foundations of China (Grant Nos. 10874096 and 20633070)
文摘The above-threshold ionization of argon in an intense 70-fs,400-nm linearly polarized laser pulse has been investigated by the velocity map imaging techniques,combined with an attosecond-resolution quantum wave packet dynamics method.There is a quantitative agreement in all dominant features between the experiment and the theory.Moreover,a peak-splitting phenomenon in the first energy peak has been observed at high pulse intensity.Further,through the theoretical analysis,an ac Stark splitting with evident resonant and nonresonant ionization pathways has been found to be the physical reason for the experimental observations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11664035,11465016,11764038,11364038,and 11564033)
文摘Above-threshold ionization (ATI) of a hydrogen atom exposed to chirped laser fields is investigated theoretically by solving the time-dependent Schrodinger equation. By comparing the energy spectra, the two-dimensional momentum spectra, and the angular distributions of photoelectron for the laser pulses with different chirp rates, we show a very clear chirp dependence both in the multiphoton and tunneling ionization processes but no chirp dependence in the single-photon ionization. We find that the chirp dependence in the multiphoton ionization based ATI can be attributed to the excited bound states. In the single-photon and tunneling ionization regimes, the electron can be removed directly from the ground state and thus the excited states may not be very important. It indicates that the chirp dependence in the tunneling ionization based ATI processes is mainly due to the laser pulses with different chirp rates,
基金supported by the National Basic Research Program of China(Grant No.2013CB922200)the National Natural Science Foundation of China(Grant Nos.11034003 and 11274140)
文摘Ionization and dissociation of linear triatomic molecules, carbon dioxide, are studied in 50-fs 800-nm strong laser fields using time-of-flight mass spectrometer. The yields of double charged ions CO2^2+ and various fragment ions(CO^+,O^n+, and C^n+(n = 1, 2)) are measured as a function of ellipticity of laser polarization in the intensity range from 5.0 ×10^13W/cm2 to 6.0 × 10^14W/cm^2. The results demonstrate that non-sequential double ionization, which is induced by laser-driven electron recollision, dominates double ionization of CO2 in the strong IR laser field with intensity lower than2.0 × 10^14W/cm^2. The electron recollision could also have contribution in strong-field multiple ionization and formation of fragments of CO2 molecules. The present study indicates that the intensity and ellipticity dependence of ions yields can be used to probe the complex dynamics of strong-field ionization/dissociation of polyatomic molecules.