The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spect...The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spectrometer(ANIS)at the China Spallation Neutron Source(CSNS).The Yolov3 and MNIST models were implemented on the XILINX28-nm system-on-chip(So C).Meanwhile,the Yolov3 and ResNet50 models were deployed on the XILINX 16-nm Fin FET Ultra Scale+MPSoC.The atmospheric neutron SEEs on the tested CNN systems were comprehensively evaluated from six aspects,including chip type,network architecture,deployment methods,inference time,datasets,and the position of the anchor boxes.The various types of SEE soft errors,SEE cross-sections,and their distribution were analyzed to explore the radiation sensitivities and rules of 28-nm and 16-nm SoC.The current research can provide the technology support of radiation-resistant design of CNN system for developing and applying high-reliability,long-lifespan domestic artificial intelligence chips.展开更多
Convolutional neural networks(CNNs) exhibit excellent performance in the areas of image recognition and object detection, which can enhance the intelligence level of spacecraft. However, in aerospace, energetic partic...Convolutional neural networks(CNNs) exhibit excellent performance in the areas of image recognition and object detection, which can enhance the intelligence level of spacecraft. However, in aerospace, energetic particles, such as heavy ions, protons, and alpha particles, can induce single event effects(SEEs) that lead CNNs to malfunction and can significantly impact the reliability of a CNN system. In this paper, the MNIST CNN system was constructed based on a 28 nm systemon-chip(SoC), and then an alpha particle irradiation experiment and fault injection were applied to evaluate the SEE of the CNN system. Various types of soft errors in the CNN system have been detected, and the SEE cross sections have been calculated. Furthermore, the mechanisms behind some soft errors have been explained. This research will provide technical support for the design of radiation-resistant artificial intelligence chips.展开更多
The integration of artificial intelligence(AI)with satellite technology is ushering in a new era of space exploration,with small satellites playing a pivotal role in advancing this field.However,the deployment of mach...The integration of artificial intelligence(AI)with satellite technology is ushering in a new era of space exploration,with small satellites playing a pivotal role in advancing this field.However,the deployment of machine learning(ML)models in space faces distinct challenges,such as single event upsets(SEUs),which are triggered by space radiation and can corrupt the outputs of neural networks.To defend against this threat,we investigate laser-based fault injection techniques on 55-nm SRAM cells,aiming to explore the impact of SEUs on neural network performance.In this paper,we propose a novel solution in the form of Bin-DNCNN,a binary neural network(BNN)-based model that significantly enhances robustness to radiation-induced faults.We conduct experiments to evaluate the denoising effectiveness of different neural network architectures,comparing their resilience to weight errors before and after fault injections.Our experimental results demonstrate that binary neural networks(BNNs)exhibit superior robustness to weight errors compared to traditional deep neural networks(DNNs),making them a promising candidate for spaceborne AI applications.展开更多
To ensure the safety and stability of power grids with photovoltaic(PV)gen eration integrati on,it is necessary to predict the output perform a nee of PV modules un der varyi ng operating con ditions.In this paper,an ...To ensure the safety and stability of power grids with photovoltaic(PV)gen eration integrati on,it is necessary to predict the output perform a nee of PV modules un der varyi ng operating con ditions.In this paper,an improved artificial neural network(ANN)method is proposed to predict the electrical characteristics of a PV module by combining several neural networks under different environmental conditions.To study the dependenee of the output performance on the solar irradianee and temperature,the proposed neural network model is composed of four neural networks,it called multineural network(MANN).Each neural network consists of three layers,in which the input is solar radiation,and the module temperature and output are five physical parameters of the single diode model.The experimental data were divided into four groups and used for training the neural networks.The electrical properties of PV modules,including l-V curves,PV curves,and normalized root mean square error,were obtained and discussed.The effectiveness and accuracy of this method is verified by the experimental data for d iff ere nt types of PV modules.Compared with the traditional single-ANN(SANN)method,the proposed method shows be社er accuracy under different operating conditions.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.12305303)the Natural Science Foundation of Hunan Province of China(Grant Nos.2023JJ40520,2024JJ2044,and 2021JJ40444)+3 种基金the Science and Technology Innovation Program of Hunan Province,China(Grant No.2020RC3054)the Postgraduate Scientific Research Innovation Project of Hunan Province,China(Grant No.CX20240831)the Natural Science Basic Research Plan in the Shaanxi Province of China(Grant No.2023-JC-QN0015)the Doctoral Research Fund of University of South China(Grant No.200XQD033)。
文摘The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spectrometer(ANIS)at the China Spallation Neutron Source(CSNS).The Yolov3 and MNIST models were implemented on the XILINX28-nm system-on-chip(So C).Meanwhile,the Yolov3 and ResNet50 models were deployed on the XILINX 16-nm Fin FET Ultra Scale+MPSoC.The atmospheric neutron SEEs on the tested CNN systems were comprehensively evaluated from six aspects,including chip type,network architecture,deployment methods,inference time,datasets,and the position of the anchor boxes.The various types of SEE soft errors,SEE cross-sections,and their distribution were analyzed to explore the radiation sensitivities and rules of 28-nm and 16-nm SoC.The current research can provide the technology support of radiation-resistant design of CNN system for developing and applying high-reliability,long-lifespan domestic artificial intelligence chips.
基金Project supported by the National Natural Science Foundation of China(Grant No.12305303)the Natural Science Foundation of Hunan Province of China(Grant Nos.2023JJ40520,2021JJ40444,and 2019JJ30019)+3 种基金the Research Foundation of Education Bureau of Hunan Province of China(Grant No.20A430)the Science and Technology Innovation Program of Hunan Province(Grant No.2020RC3054)the Natural Science Basic Research Plan in the Shaanxi Province of China(Grant No.2023-JC-QN-0015)the Doctoral Research Fund of University of South China。
文摘Convolutional neural networks(CNNs) exhibit excellent performance in the areas of image recognition and object detection, which can enhance the intelligence level of spacecraft. However, in aerospace, energetic particles, such as heavy ions, protons, and alpha particles, can induce single event effects(SEEs) that lead CNNs to malfunction and can significantly impact the reliability of a CNN system. In this paper, the MNIST CNN system was constructed based on a 28 nm systemon-chip(SoC), and then an alpha particle irradiation experiment and fault injection were applied to evaluate the SEE of the CNN system. Various types of soft errors in the CNN system have been detected, and the SEE cross sections have been calculated. Furthermore, the mechanisms behind some soft errors have been explained. This research will provide technical support for the design of radiation-resistant artificial intelligence chips.
文摘The integration of artificial intelligence(AI)with satellite technology is ushering in a new era of space exploration,with small satellites playing a pivotal role in advancing this field.However,the deployment of machine learning(ML)models in space faces distinct challenges,such as single event upsets(SEUs),which are triggered by space radiation and can corrupt the outputs of neural networks.To defend against this threat,we investigate laser-based fault injection techniques on 55-nm SRAM cells,aiming to explore the impact of SEUs on neural network performance.In this paper,we propose a novel solution in the form of Bin-DNCNN,a binary neural network(BNN)-based model that significantly enhances robustness to radiation-induced faults.We conduct experiments to evaluate the denoising effectiveness of different neural network architectures,comparing their resilience to weight errors before and after fault injections.Our experimental results demonstrate that binary neural networks(BNNs)exhibit superior robustness to weight errors compared to traditional deep neural networks(DNNs),making them a promising candidate for spaceborne AI applications.
基金the National Key Research and Development Program of China(Grant No.2018YFB0904200).
文摘To ensure the safety and stability of power grids with photovoltaic(PV)gen eration integrati on,it is necessary to predict the output perform a nee of PV modules un der varyi ng operating con ditions.In this paper,an improved artificial neural network(ANN)method is proposed to predict the electrical characteristics of a PV module by combining several neural networks under different environmental conditions.To study the dependenee of the output performance on the solar irradianee and temperature,the proposed neural network model is composed of four neural networks,it called multineural network(MANN).Each neural network consists of three layers,in which the input is solar radiation,and the module temperature and output are five physical parameters of the single diode model.The experimental data were divided into four groups and used for training the neural networks.The electrical properties of PV modules,including l-V curves,PV curves,and normalized root mean square error,were obtained and discussed.The effectiveness and accuracy of this method is verified by the experimental data for d iff ere nt types of PV modules.Compared with the traditional single-ANN(SANN)method,the proposed method shows be社er accuracy under different operating conditions.