Contrary to the aliasing defect between the adjacent intrinsic model functions(IMFs) existing in empirical model decomposition(EMD), a new method of detecting dynamic unbalance with cardan shaft in high-speed train wa...Contrary to the aliasing defect between the adjacent intrinsic model functions(IMFs) existing in empirical model decomposition(EMD), a new method of detecting dynamic unbalance with cardan shaft in high-speed train was proposed by applying the combination between EMD, Hankel matrix, singular value decomposition(SVD) and normalized Hilbert transform(NHT). The vibration signals of gimbal installed base were decomposed through EMD to get different IMFs. The Hankel matrix constructed through the single IMF was orthogonally executed through SVD. The critical singular values were selected to reconstruct vibration signs on the basis of the key stack of singular values. Instantaneous frequencys(IFs) of reconstructed vibration signs were applied to detect dynamic unbalance with shaft and eliminated clutter spectrum caused by the aliasing defect between the adjacent IMFs, which highlighted the failure characteristics. The method was verified by test data in the unbalance condition of dynamic cardan shaft. The results show that the method effectively detects the fault vibration characteristics caused by cardan shaft dynamic unbalance and extracts the nature vibration features. With comparison to the traditional EMD-NHT, clarity and failure characterization force are significantly improved.展开更多
针对EMD(Empirical Model Decomposition)存在模式频率混叠带来的频谱杂乱的根本缺陷,提出一种高速列车万向轴动不平衡动态检测的新方法。该方法的核心是:对万向节安装机座的振动信号进行EMD分解得到基本模式分量,应用基本模式分量信号...针对EMD(Empirical Model Decomposition)存在模式频率混叠带来的频谱杂乱的根本缺陷,提出一种高速列车万向轴动不平衡动态检测的新方法。该方法的核心是:对万向节安装机座的振动信号进行EMD分解得到基本模式分量,应用基本模式分量信号来构造Hankel矩阵,对该矩阵进行奇异值正交化分解,以奇异值关键叠层作为奇异值的选择准则对信号进行重构,应用重构信号的傅里叶谱来检测高速列车万向轴的动不平衡,消除EMD分解模式频率混叠带来频谱杂乱,提高了谱的清晰度,凸显了故障特征。应用万向轴动不平衡试验数据对该方法进行试验验证,结果表明:该方法能够有效检测万向轴动不平衡引起故障特征和万向轴的固有振动特性,与纯EMD方法相比,该方法在谱的清晰度和故障表征力上得到了显著提高。展开更多
针对经验模态分解(empirical model decomposition,EMD)所得的本质特征函数(intrinsic model function,IMF)之间存在相互耦合、难以清晰提取高速列车轮对轴承的故障特征问题,提出一种轮对轴承故障检测的新方法。该方法的核心是应用EMD...针对经验模态分解(empirical model decomposition,EMD)所得的本质特征函数(intrinsic model function,IMF)之间存在相互耦合、难以清晰提取高速列车轮对轴承的故障特征问题,提出一种轮对轴承故障检测的新方法。该方法的核心是应用EMD自适应地分解轴承振动信号,得到多尺度的IMF,应用单尺度的IMF信号构造Hankel矩阵,对该矩阵进行奇异值分解(singular value decomposition,SVD),应用奇异值的差分谱来选择其关键奇异值,对关键奇异值进行奇异值重构,通过重构信号的包络谱分析来检测轮对轴承的故障。利用高速列车轮对轴承故障数据对该检测方法和模型进行验证,结果表明:该方法能够清晰地提取表征轴承故障特性的基频、倍频成分,突显故障频率特征,具有一定工程应用前景。展开更多
为了提高电能质量复合扰动(PQMD)信号的去噪指标,实现扰动信号特征的准确检测,提出一种自适应多尺度SVD(Adaptive Multi-resolution Singular Value Decomposition,AMSVD)去噪新算法及数学框架。该算法首先分析了高斯白噪声奇异值分布...为了提高电能质量复合扰动(PQMD)信号的去噪指标,实现扰动信号特征的准确检测,提出一种自适应多尺度SVD(Adaptive Multi-resolution Singular Value Decomposition,AMSVD)去噪新算法及数学框架。该算法首先分析了高斯白噪声奇异值分布情况及多尺度SVD消噪原理,针对不同尺度下的噪声近似与细节信号奇异值差值规律,确定出最佳消噪尺度的约束条件,由此实现噪声先验信息未知的自适应消噪方法。研究结果表明,在对不同噪声方差下的电能质量复合扰动去噪处理中,AMSVD消噪效果优于其他5种方法。为了进一步验证AMSVD算法去噪后特征量检测的准确性,采用希尔伯特黄变换(HHT)提取扰动特征信息,仿真结果表明该算法具有可行性和鲁棒性。展开更多
基金Projects(61134002,51305358)supported by the National Natural Science Foundation of ChinaProject(PIL1303)supported by the Open Project of State Key Laboratory of Precision Measurement Technology and Instruments,ChinaProject(2682014BR032)supported by the Fundamental Research Funds for the Central Universities,China
文摘Contrary to the aliasing defect between the adjacent intrinsic model functions(IMFs) existing in empirical model decomposition(EMD), a new method of detecting dynamic unbalance with cardan shaft in high-speed train was proposed by applying the combination between EMD, Hankel matrix, singular value decomposition(SVD) and normalized Hilbert transform(NHT). The vibration signals of gimbal installed base were decomposed through EMD to get different IMFs. The Hankel matrix constructed through the single IMF was orthogonally executed through SVD. The critical singular values were selected to reconstruct vibration signs on the basis of the key stack of singular values. Instantaneous frequencys(IFs) of reconstructed vibration signs were applied to detect dynamic unbalance with shaft and eliminated clutter spectrum caused by the aliasing defect between the adjacent IMFs, which highlighted the failure characteristics. The method was verified by test data in the unbalance condition of dynamic cardan shaft. The results show that the method effectively detects the fault vibration characteristics caused by cardan shaft dynamic unbalance and extracts the nature vibration features. With comparison to the traditional EMD-NHT, clarity and failure characterization force are significantly improved.
文摘针对EMD(Empirical Model Decomposition)存在模式频率混叠带来的频谱杂乱的根本缺陷,提出一种高速列车万向轴动不平衡动态检测的新方法。该方法的核心是:对万向节安装机座的振动信号进行EMD分解得到基本模式分量,应用基本模式分量信号来构造Hankel矩阵,对该矩阵进行奇异值正交化分解,以奇异值关键叠层作为奇异值的选择准则对信号进行重构,应用重构信号的傅里叶谱来检测高速列车万向轴的动不平衡,消除EMD分解模式频率混叠带来频谱杂乱,提高了谱的清晰度,凸显了故障特征。应用万向轴动不平衡试验数据对该方法进行试验验证,结果表明:该方法能够有效检测万向轴动不平衡引起故障特征和万向轴的固有振动特性,与纯EMD方法相比,该方法在谱的清晰度和故障表征力上得到了显著提高。
文摘针对经验模态分解(empirical model decomposition,EMD)所得的本质特征函数(intrinsic model function,IMF)之间存在相互耦合、难以清晰提取高速列车轮对轴承的故障特征问题,提出一种轮对轴承故障检测的新方法。该方法的核心是应用EMD自适应地分解轴承振动信号,得到多尺度的IMF,应用单尺度的IMF信号构造Hankel矩阵,对该矩阵进行奇异值分解(singular value decomposition,SVD),应用奇异值的差分谱来选择其关键奇异值,对关键奇异值进行奇异值重构,通过重构信号的包络谱分析来检测轮对轴承的故障。利用高速列车轮对轴承故障数据对该检测方法和模型进行验证,结果表明:该方法能够清晰地提取表征轴承故障特性的基频、倍频成分,突显故障频率特征,具有一定工程应用前景。
文摘为了提高电能质量复合扰动(PQMD)信号的去噪指标,实现扰动信号特征的准确检测,提出一种自适应多尺度SVD(Adaptive Multi-resolution Singular Value Decomposition,AMSVD)去噪新算法及数学框架。该算法首先分析了高斯白噪声奇异值分布情况及多尺度SVD消噪原理,针对不同尺度下的噪声近似与细节信号奇异值差值规律,确定出最佳消噪尺度的约束条件,由此实现噪声先验信息未知的自适应消噪方法。研究结果表明,在对不同噪声方差下的电能质量复合扰动去噪处理中,AMSVD消噪效果优于其他5种方法。为了进一步验证AMSVD算法去噪后特征量检测的准确性,采用希尔伯特黄变换(HHT)提取扰动特征信息,仿真结果表明该算法具有可行性和鲁棒性。