期刊文献+
共找到1,728篇文章
< 1 2 87 >
每页显示 20 50 100
Recycling waste crystalline-silicon solar cells: Application as high performance Si-based anode materials for lithium-ion batteries 被引量:1
1
作者 WANG Qi MENG Bi-cheng +6 位作者 DU Yue-yong XU Xiang-qun ZHOU Zhe Boon K.Ng ZHANG Zong-liang JIANG Liang-xing LIU Fang-yang 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第9期2888-2898,共11页
Recycling useful materials such as Ag, Al, Sn, Cu and Si from waste silicon solar cell chips is a sustainable project to slow down the ever-growing amount of waste crystalline-silicon photovoltaic panels. However, the... Recycling useful materials such as Ag, Al, Sn, Cu and Si from waste silicon solar cell chips is a sustainable project to slow down the ever-growing amount of waste crystalline-silicon photovoltaic panels. However, the recovery cost of the above-mentioned materials from silicon chips via acid-alkaline treatments outweights the gain economically.Herein, we propose a new proof-of-concept to fabricate Si-based anodes with waste silicon chips as raw materials.Nanoparticles from waste silicon chips were prepared with the high-energy ball milling followed by introducing carbon nanotubes and N-doped carbon into the nanoparticles, which amplifies the electrochemical properties. It is explored that Al and Ag elements influenced electrochemical performance respectively. The results showed that the Al metal in the composite possesses an adverse impact on the electrochemical performance. After removing Al, the composite was confirmed to possess a pronounced durable cycling property due to the presence of Ag, resulting in significantly more superior property than the composite having both Al and Ag removed. 展开更多
关键词 waste solar panels RECYCLING si-based anodes lithium-ion batteries
在线阅读 下载PDF
A review of anode materials for sodium ion batteries 被引量:3
2
作者 Syed Ali Riza XU Ri-gan +6 位作者 LIU Qi Muhammad Hassan YANG Qiang MU Dao-bin LI Li WU Feng CHEN Ren-jie 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期743-769,共27页
Lithium-ion batteries(LIBs)are used in electric vehicles and portable smart devices,but lithium resources are dwindling and there is an increasing demand which has to be catered for.Sodium ion batteries(SIBs),which ar... Lithium-ion batteries(LIBs)are used in electric vehicles and portable smart devices,but lithium resources are dwindling and there is an increasing demand which has to be catered for.Sodium ion batteries(SIBs),which are less costly,are a promising replacement for LIBs because of the abundant natural reserves of sodium.The anode of a SIB is a necessary component of the battery but is less understood than the cathode.This review outlines the development of various types of anodes,including carbonbased,metallic and organic,which operate using different reaction mechanisms such as intercalation,alloying and conversion,and considers their challenges and prospects.Strategies for modifying their structures by doping and coating,and also modifying the solid electrolyte interface are discussed.In addition,this review also discusses the challenges encountered by the anode of SIBs and the solutions. 展开更多
关键词 Sodium ion batteries anode Carbon material Metallic compound ORGANIC
在线阅读 下载PDF
A N-doped carbon with encapsulated Fe and Co particles derived from a metal organic framework for use as the anode in lithium-ion batteries
3
作者 CHEN Ren-tian ZHU Yu-xin +5 位作者 LUO Rui JIANG Xiao-nuo SI Hong-xiang QIU Xiang-yun WANG Qian WEI Tao 《新型炭材料(中英文)》 北大核心 2025年第2期363-376,共14页
Metal-organic frameworks(MOFs)are import-ant as possible energy storage materials.Nitrogen-doped iron-cobalt MOFs were synthesized by a one-pot solvo-thermal method using CoCl_(3)·6H_(2)O and FeCl_(3)·6H_(2)... Metal-organic frameworks(MOFs)are import-ant as possible energy storage materials.Nitrogen-doped iron-cobalt MOFs were synthesized by a one-pot solvo-thermal method using CoCl_(3)·6H_(2)O and FeCl_(3)·6H_(2)O dis-solved in N,N-dimethylformamide,and were converted into Fe-Co embedded in N-doped porous carbon polyhedra by pyrolysis in a nitrogen atmosphere.During pyrolysis,the or-ganic ligands transformed into N-doped porous carbon which improved their structural stability and also their electrical contact with other materials.The Fe and Co are tightly bound together because of their encapsulation by the carbon nitride and are well dispersed in the carbon matrix,and improve the material’s conductivity and stability and provide additional capacity.When used as the anode for lithium-ion batteries,the material gives an initial capacity of up to 2230.7 mAh g^(-1)and a reversible capa-city of 1146.3 mAh g^(-1)is retained after 500 cycles at a current density of 0.5 A g^(-1),making it an excellent candidate for this purpose. 展开更多
关键词 Metal-organic frameworks FeCo alloy Lithium-ion battery anode materials
在线阅读 下载PDF
Tailoring the pore structure of hard carbon for enhanced sodium-ion battery anodes
4
作者 SONG Ning-Jing MA Can-liang +3 位作者 GUO Nan-nan ZHAO Yun LI Wan-xi LI Bo-qiong 《新型炭材料(中英文)》 北大核心 2025年第2期377-391,共15页
Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiv... Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiveness,and environ-mental friendliness.The pyrolysis method affects the microstructure of the material,and ultimately its so-dium storage performance.Our previous work has shown that pyrolysis in a sealed graphite vessel im-proved the sodium storage performance of the car-bon,however the changes in its microstructure and the way this influences the sodium storage are still unclear.A series of hard carbon materials derived from corncobs(CCG-T,where T is the pyrolysis temperature)were pyrolyzed in a sealed graphite vessel at different temperatures.As the pyrolysis temperature increased from 1000 to 1400℃ small carbon domains gradually transformed into long and curved domains.At the same time,a greater number of large open pores with uniform apertures,as well as more closed pores,were formed.With the further increase of pyrolysis temperature to 1600℃,the long and curved domains became longer and straighter,and some closed pores gradually became open.CCG-1400,with abundant closed pores,had a superior SIB performance,with an initial reversible ca-pacity of 320.73 mAh g^(-1) at a current density of 30 mA g^(-1),an initial Coulomb efficiency(ICE)of 84.34%,and a capacity re-tention of 96.70%after 100 cycles.This study provides a method for the precise regulation of the microcrystalline and pore structures of hard carbon materials. 展开更多
关键词 Pore structure regulation Closed pore Corn cob Hard carbon anode material Sodium-ion batteries
在线阅读 下载PDF
Effects of carbon sources on electrochemical performance of Li_4Ti_5O_(12)/C composite anode materials 被引量:1
5
作者 刘萍 张治安 +1 位作者 李劼 赖延清 《Journal of Central South University》 SCIE EI CAS 2010年第6期1207-1210,共4页
Li4Ti5O12/C composite materials were synthesized by two-step solid state reaction method with glucose, sucrose, and starch as carbon sources, respectively. The effects of carbon sources on the structure, morphology, a... Li4Ti5O12/C composite materials were synthesized by two-step solid state reaction method with glucose, sucrose, and starch as carbon sources, respectively. The effects of carbon sources on the structure, morphology, and electrochemical performance of Li4Ti5O12/C composite materials were investigated by SEM, XRD and electrochemical tests. The results indicate that carbon sources have almost no effect on the structure of Li4Ti5O12/C composite materials. The initial discharge capacities of the Li4Ti1O12/C composite materials are slightly lower than those of as-synthesized Li4Ti5O12. However, Li4Ti5O12/C composite materials show better electrochemical rate performance than the as-synthesized Li4Ti5O12. The capacity retention (79%) of the Li4Ti5O12/C composite materials with starch as carbon source, is higher than that of Li4Ti5O12/C composite materials with glucose and sucrose as carbon source at current rate of 2.0C. 展开更多
关键词 lithium-ion battery anode material LI4TI5O12 CARBON electrochemical performance
在线阅读 下载PDF
TiO_2/graphene nanocomposites as anode materials for high rate lithium-ion batteries
6
作者 唐谊平 王诗明 +2 位作者 谭晓旭 侯广亚 郑国渠 《Journal of Central South University》 SCIE EI CAS 2014年第5期1714-1718,共5页
A simple strategy to prepare a hybrid of nanocomposites of anatase TiO2/graphene nanosheets (GNS) as anode materials for lithium-ion batteries was reported.The morphology and crystal structure were studied by X-ray ... A simple strategy to prepare a hybrid of nanocomposites of anatase TiO2/graphene nanosheets (GNS) as anode materials for lithium-ion batteries was reported.The morphology and crystal structure were studied by X-ray diffraction (XRD),field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM).The electrochemical performance was evaluated by galvanostatic charge-lischarge tests and alternating current (AC) impedance spectroscopy.The results show that the TiO2/GNS electrode exhibit higher electrochemical performance than that of TiO2 electrode regardless of the rate.Even at 500 mA/g,the capacity of TiO2/GNS is 120.3 mAh/g,which is higher than that of TiO2 61.6 mAh/g.The high performance is attributed to the addition of graphene to improve electrical conductivity and reduce polarization. 展开更多
关键词 TIO2 graphene nanosheets lithium-ion batteries anode materials
在线阅读 下载PDF
Synthesis of pitch-derived carbon anodes for high-performance potassium-ion batteries 被引量:2
7
作者 JIANG Ming-chi SUN Ning +4 位作者 YU Jia-xu WANG Ti-zheng Razium Ali Somoro JIA Meng-qiu XU Bin 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第6期1117-1127,共11页
Potassium-ion batteries(PIBs)hold promise for large-scale energy storage,necessitating the development of high-performance anode materials.Carbons with the advantage of structural versatility,are recognized as the mos... Potassium-ion batteries(PIBs)hold promise for large-scale energy storage,necessitating the development of high-performance anode materials.Carbons with the advantage of structural versatility,are recognized as the most promising anode materials for their commercialization,however the relationship between the carbon anode structure and its electrochemical performance remains unclear.A series of pitch-based soft carbons with different structures were fabricated using carbonization temperatures in the range 600–1400℃,and their changes in carbon configuration and K-storage performance as a function of carbonization temperature were investigated.Correlations between the carbon crystal size and the low-potential plateau region capacity and between the degree of structural disorder of the carbons with their sloping region capacity were revealed.Among all samples,that obtained by carbonization at 700℃had a relatively high degree of disorder and a large interlayer spacing,and had a high reversible capacity of 329.4 mAh g^(-1) with a high initial coulombic efficiency of 72.81%,and maintained a high capacity of 144.2 mAh g^(-1) at the current rate of 5 C.These findings improve our fundamental understanding of the K-storage process in carbon anodes,and thus facilitate the advance of PIBs. 展开更多
关键词 Potassium-ion batteries PITCH Carbon material anode MECHANISM
在线阅读 下载PDF
Defect-rich N/O-co-doped porous carbon frameworks as anodes for superior potassium and sodium-ion batteries 被引量:1
8
作者 BAI Ling LIU Qian +5 位作者 HONG Tao LI Hao-ran ZHU Fang-yuan LIU Hai-gang LI Zi-quan HUANG Zhen-dong 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第6期1144-1156,共13页
Carbon with its high electrical conductivity,excellent chemical stability,and structure ability is the most promising an-ode material for sodium and potassium ion batteries.We developed a defect-rich porous carbon fra... Carbon with its high electrical conductivity,excellent chemical stability,and structure ability is the most promising an-ode material for sodium and potassium ion batteries.We developed a defect-rich porous carbon framework(DRPCF)built with N/O-co-doped mesoporous nanosheets and containing many defects using porous g-C_(3)N_(4)(PCN)and dopamine(DA)as raw materials.We prepared samples with PCN/DA mass ratios of 1/1,2/1 and 3/1 and found that the one with a mass ratio of 2/1 and a carbonization temperature of 700℃ in an Ar atmosphere(DRPCF-2/1-700),had a large specific surface area with an enormous pore volume and a large number of N/O heteroatom active defect sites.Because of this,it had the best pseudocapacitive sodium and potassium ion stor-age performance.A half battery of Na//DRPCF-2/1-700 maintained a capacity of 328.2 mAh g^(-1) after being cycled at 1 A g^(-1) for 900 cycles,and a half battery of K//DRPC-2/1-700 maintained a capacity of 321.5 mAh g^(-1) after being cycled at 1 A g^(-1) for 1200 cycles.The rate capability and cycling stability achieved by DRPCF-2/1-700 outperforms most reported carbon materials.Finally,ex-situ Raman spectroscopy analysis result confirms that the filling and removing of K^(+)and Na^(+)from the electrochemically active defects are responsible for the high capacity,superior rate and cycling performance of the DRPCF-2/1-700 sample. 展开更多
关键词 Defect-rich porous carbon N/O-co-doping anode materials Sodium ion batteries Potassium ion batteries
在线阅读 下载PDF
Preparation and effects of W-doping on electrochemical properties of spinel Li_4Ti_5O_(12) as anode material for lithium ion battery 被引量:4
9
作者 张新龙 胡国荣 彭忠东 《Journal of Central South University》 SCIE EI CAS 2013年第5期1151-1155,共5页
W-doped Li4TisO12 in the form of Li4Ti4.95W0.osO12 was firstly synthesized via solid state reaction. X-ray diffraction (XRD) and scanning electron microscope (gEM) were employed to characterize the structure and m... W-doped Li4TisO12 in the form of Li4Ti4.95W0.osO12 was firstly synthesized via solid state reaction. X-ray diffraction (XRD) and scanning electron microscope (gEM) were employed to characterize the structure and morphology of Li4Ti4.psW0.05Ol2. W-doping does not change the phase composition and particle morphology, while remarkably improves its cycling stability at high charge/discharge rate. Li4Ti4.95W0.05O12 exhibits an excellent rate capability with a reversible capacity of 131.2 mA.h/g at 10C and even 118.6 mA.h/g at 20C. The substitution of W for Ti site can enhance the electronic conductivity of Li4TisO12 via the generation of mixing Ti4+/Ti3+, which indicates that Li4Ti4.psW0.05O12 is promising as a high rate anode for the lithium-ion batteries. 展开更多
关键词 lithium-ion battery lithium titanate anode material DOPING
在线阅读 下载PDF
Relationship between initial efficiency and structure parameters of carbon anode material for Li-ion battery 被引量:1
10
作者 申建斌 唐有根 +1 位作者 梁逸曾 谭欣欣 《Journal of Central South University of Technology》 EI 2008年第4期484-487,共4页
The initial efficiency is a very important criterion for carbon anode material of Li-ion battery.The relationship between initial efficiency and structure parameters of carbon anode material of Li-ion battery was inve... The initial efficiency is a very important criterion for carbon anode material of Li-ion battery.The relationship between initial efficiency and structure parameters of carbon anode material of Li-ion battery was investigated by an artificial intelligence approach called Random Forests using D10,D50,D90,BET specific surface area and TP density as inputs,initial efficiency as output.The results give good classification performance with 91%accuracy.The variable importance analysis results show the impact of 5 variables on the initial efficiency descends in the order of D90,TP density,BET specific surface area,D50 and D10;smaller D90 and larger TP density have positive impact on initial efficiency.The contribution of BET specific surface area on classification is only 18.74%,which indicates the shortcoming of BET specific surface area as a widely used parameter for initial efficiency evaluation. 展开更多
关键词 Li-ion battery carbon anode material initial efficiency structure parameters
在线阅读 下载PDF
Synthesis and electrochemical performance of TiO_2-B as anode material
11
作者 王新宇 谢科予 +3 位作者 李劼 赖延清 张治安 刘业翔 《Journal of Central South University》 SCIE EI CAS 2011年第2期406-410,共5页
TiO2-B was synthesized by solid-state reaction. The structures, surface morphologies and electrochemical performances of TiO2-B were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) ... TiO2-B was synthesized by solid-state reaction. The structures, surface morphologies and electrochemical performances of TiO2-B were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurement, respectively. The effects of calcining temperature, molar ratio of K2O to TiO2 and calcining time on the characteristics of TiO2-B were investigated. The results show that the calcining time exerts a significant influence on the electrochemical performances of TiO2-B. The TiO2-B is obtained with good crystal structure and suitable size by using K2Ti4O9, which is prepared at 950 ℃for 24 h under the condition of x(K2O)/x(TiO2)=1:3.5. The TiO2-B delivers all initial discharge capacity of 231.6 mA.h/g. And the rate caoacitv is 73.2 mA-h/g at 1 675 mA/g, which suggests that TiO2-B is a promising anode material for the lithium ion batteries. 展开更多
关键词 lithium ion battery TiO2-B solid state method anode material
在线阅读 下载PDF
Facile synthesis of hierarchically structured manganese oxides as anode for lithium-ion batteries 被引量:5
12
作者 DENG Zhao HUANG Xing +2 位作者 ZHAO Xu CHENG Hua WANG Hong-en 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第6期1481-1492,共12页
Developing high-performance lithium ion batteries(LIBs)using manganese oxides as anodes is attractive due to their high theoretical capacity and abundant resources.Herein,we report a facile synthesis of hierarchical s... Developing high-performance lithium ion batteries(LIBs)using manganese oxides as anodes is attractive due to their high theoretical capacity and abundant resources.Herein,we report a facile synthesis of hierarchical spherical MnO2 containing coherent amorphous/crystalline domained by a simple yet effective redox precipitation reaction at room temperature.Further,flower-like CoMn2O4 constructed by single-crystalline spinel nanosheets has been fabricated using MnO2 as precursor.This mild methodology avoids undesired particle aggregation and loss of active surface area in conventional hydrothermal or solid-state processes.Moreover,both MnO2 and CoMn2O4 nanosheets manifest superior lithium-ion storage properties,rendering them promising applications in LIBs and other energy-related fields. 展开更多
关键词 manganese oxides nanostructures anode materials lithium ion batteries ELECTROCHEMISTRY
在线阅读 下载PDF
Purification process of coal-based coke powder as anode for Li-ion batteries 被引量:5
13
作者 杨娟 马路路 周向阳 《Journal of Central South University》 SCIE EI CAS 2014年第3期857-861,共5页
A process of purification of coal-based coke powder as anode the treatment of coke powder with dilute hydrofluoric acid solution, for Li-ion batteries was attempted. The process started with followed by united-acid-le... A process of purification of coal-based coke powder as anode the treatment of coke powder with dilute hydrofluoric acid solution, for Li-ion batteries was attempted. The process started with followed by united-acid-leaching using sulfuric acid and hydrochloric acid. The effects of altering the hydrofluoric acid addition, hydrofluoric acid concentration, contact time, temperature and acid type were investigated. A minimum ash content of 0.35% was obtained when proper conditions were applied. The electrochemical performance of purified coke powder shows greatly improved electrochemical performance. The as-purified coke powder presented an initial reversible capacity of 257.4 mAh/g and a retention rate of 95% after 50 cycles. The proposed purification process paves a way to prepare a promising anode material with good performance with low cost of coke powder for Li-ion batteries. 展开更多
关键词 purification process coal-based coke powder anode material Li-ion batteries
在线阅读 下载PDF
La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3)-δ−Ce_(0.8)Gd_(0.2)O_(1.9) composite electrodes as anodes in LaGaO_(3)-based direct carbon solid oxide fuel cells 被引量:2
14
作者 CHEN Tian-yu XIE Yong-min +7 位作者 LU Zhi-bin WANG Liang CHEN Zhe-qin ZHONG Xiao-cong LIU Jia-ming WANG Rui-xiang XU Zhi-feng OUYANG Shao-bo 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第6期1788-1798,共11页
Direct carbon solid oxide fuel cells(DC-SOFCs)are promising,green,and efficient power-generating devices that are fueled by solid carbons and comprise all-solid-state structures.Developing suitable anode materials for... Direct carbon solid oxide fuel cells(DC-SOFCs)are promising,green,and efficient power-generating devices that are fueled by solid carbons and comprise all-solid-state structures.Developing suitable anode materials for DC-SOFCs is a substantial scientific challenge.Herein we investigated the use of La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3)-δ−Ce_(0.8)Gd_(0.2)O_(1.9)(LSCM−GDC)composite electrodes as anodes for La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3)-δelectrolyte-based DC-SOFCs,with Camellia oleifera shell char as the carbon fuel.The LSCM−GDC-anode DC-SOFC delivered a maximum power density of 221 mW/cm^(2) at 800℃ and it significantly improved to 425 mW/cm^(2) after Ni nanoparticles were introduced into the LSCM−GDC anode through wet impregnation.The microstructures of the prepared anodes were characterized,and the stability of the anode in a DC-SOFC and the influence of catalytic activity on open circuit voltage were studied.The above results indicate that LSCM–GDC anode is promising to be applied in DC-SOFCs. 展开更多
关键词 direct carbon solid oxide fuel cells anode material La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3)-δ−Ce_(0.8)Gd_(0.2)O_(1.9) composite electrodes Ni nanoparticles
在线阅读 下载PDF
二硫化锡基钠离子电池负极材料研究进展 被引量:3
15
作者 李倩 李常林 +4 位作者 王硕然 黄娜 王文培 马红周 翁雅青 《有色金属(中英文)》 北大核心 2025年第4期525-535,共11页
随着化石能源的消耗和人们对清洁可再生能源需求的不断增加,开发新型储能材料刻不容缓。钠离子电池因钠资源丰富,在大规模储能方面成为继锂离子电池之后最具前景的二次电池。电池的负极材料对电池的电化学性能有着重要的影响,二硫化锡... 随着化石能源的消耗和人们对清洁可再生能源需求的不断增加,开发新型储能材料刻不容缓。钠离子电池因钠资源丰富,在大规模储能方面成为继锂离子电池之后最具前景的二次电池。电池的负极材料对电池的电化学性能有着重要的影响,二硫化锡作为钠离子电池的负极材料具有高理论比容量、易于调控的形貌和优异的循环稳定性等特点,引发研究人员的广泛关注。对二硫化锡的结构以及作为钠离子电池负极材料的钠化机理进行了总结,概括了提高其电化学性能的一些方法,最后对二硫化锡负极材料在钠离子电池中面临的挑战和发展前景进行了总结和展望。 展开更多
关键词 钠离子电池 负极材料 二硫化锡 钠化机理 电化学性能
在线阅读 下载PDF
碲化钴负极材料的制备及储钠性能研究 被引量:2
16
作者 崔雅茹 孙晓艺 +2 位作者 胡锦鹏 郝禹 严加隆 《有色金属(中英文)》 北大核心 2025年第1期31-38,共8页
碲化钴(CoTe_(2))作为储钠负极材料因其具有大离子半径、高密度(7.92 g·cm^(-3))和独特的晶体结构,已经得到广泛的研究。然而,CoTe_(2)固有的低电导率和钠离子脱嵌过程中的体积膨胀,制约了CoTe_(2)在钠离子电池中的应用。金属有机... 碲化钴(CoTe_(2))作为储钠负极材料因其具有大离子半径、高密度(7.92 g·cm^(-3))和独特的晶体结构,已经得到广泛的研究。然而,CoTe_(2)固有的低电导率和钠离子脱嵌过程中的体积膨胀,制约了CoTe_(2)在钠离子电池中的应用。金属有机骨架由于特殊的拓扑结构,可调节的组成和较大的比表面积,是合成电极材料的理想模板。以Co基金属有机骨架(ZIF-67)为前驱体,通过高温碲化的方法原位构建了氮掺杂碳限域的CoTe_(2)多面体负极材料,同时讨论了不同的碲化温度对最终产物的微观形貌,物相组成以及充放电行为的影响。结果表明,550℃条件下,制备的CoTe_(2)展现了均匀的颗粒分布,晶型与标准的CoTe_(2)晶体较匹配。在0.1 A·g^(-1)电流密度下对材料进行恒电流充放电测试,循环100圈后,其放电比容量为137.7 mAh·g^(-1),而450℃和650℃下合成的CoTe_(2)比容量分别只有66.7和91.5 mAh·g^(-1)。 展开更多
关键词 ZIF-67 CoTe_(2) 碲化温度 钠离子电池 负极材料
在线阅读 下载PDF
农林生物质衍生多孔碳构筑锂电池负极新材料 被引量:1
17
作者 肖高 郑明珠 +1 位作者 毛诗钰 李晓慧 《精细化工》 北大核心 2025年第2期233-243,共11页
农林生物质废弃物作为一种价廉易得的可再生资源,具有丰富的碳源和多孔通道优势。其通过炭化和活化等制备方法及其他复合改性方法可得到具有优良性能的新型多孔材料,该材料在储能方面具有广阔的应用前景。特别是在锂离子电池中的应用方... 农林生物质废弃物作为一种价廉易得的可再生资源,具有丰富的碳源和多孔通道优势。其通过炭化和活化等制备方法及其他复合改性方法可得到具有优良性能的新型多孔材料,该材料在储能方面具有广阔的应用前景。特别是在锂离子电池中的应用方面,生物质衍生多孔碳具备可提高电池的循环性能、容量和倍率性能等优势。该文对基于生物质构建锂离子电池负极材料的应用现状进行了总结,主要介绍了稻壳、玉米秸秆、棉花和果壳等生物质衍生多孔碳应用于锂离子电池负极的电化学性能,并探讨了目前生物质基负极材料存在的问题。另外,还讨论了未来生物质在储能领域的研究方向和应用前景,为化工新型碳材料和锂离子电池的可持续发展提供了新途径和新思路。 展开更多
关键词 生物质衍生多孔碳 锂离子电池 负极材料 农林废弃物 应用方向
在线阅读 下载PDF
MOF基ZnO/NiO@C复合材料作为高性能锂离子电池负极材料
18
作者 李培枝 雷盼 +2 位作者 杨晓武 张康 王晨 《电源技术》 北大核心 2025年第1期106-113,共8页
通过简单的溶剂热法和煅烧法制备了MOF衍生的ZnO/NiO@C多孔纳米复合材料,采用傅里叶红外光谱(FT-IR)、扫描电镜(SEM)、X射线衍射(XRD)对其微观形貌和结构进行表征,利用X射线光电子能谱(XPS)分析了复合材料的元素组成,通过氮气吸附/脱附... 通过简单的溶剂热法和煅烧法制备了MOF衍生的ZnO/NiO@C多孔纳米复合材料,采用傅里叶红外光谱(FT-IR)、扫描电镜(SEM)、X射线衍射(XRD)对其微观形貌和结构进行表征,利用X射线光电子能谱(XPS)分析了复合材料的元素组成,通过氮气吸附/脱附实验测试了复合材料的比表面积和孔径分布,结果表明:复合材料具有高比表面积和一定数量的介孔,在100 mA/g电流密度下,ZnO/NiO@C电极首次放电比容量为1489.7 mAh/g,循环400次后的可逆比容量为1078.0 mAh/g,容量保持率为72.4%。此外,通过不同倍率的充放电实验,电极的比容量可以恢复到初始倍率的75.28%,测试结果表明ZnO/NiO@C电极具有优异的循环性能和较好的倍率性能,良好的电化学性能是由于其多孔结构、高比表面积和丰富的电化学活性位点,降低了电荷的传递阻力,促进了离子的扩散,提高了倍率性能和循环稳定性。 展开更多
关键词 锂离子电池 负极材料 MOF 金属有机骨架 多孔结构
在线阅读 下载PDF
CoSe_(2)/MXene复合材料的制备及在钠离子电池中的应用
19
作者 何锡凤 王福洋 马洁 《化学研究与应用》 北大核心 2025年第5期1140-1146,共7页
采用常规水热法在二维材料MXene(Ti_(3)AlC_(2))上原位生长多孔纳米立方体CoSe_(2),调控制备活性位点多、结构稳定的CoSe_(2)/MXene复合材料。采用SEM、TEM、XRD、XPS对复合材料的结构和形貌进行表征。结果显示,该复合材料不仅有效抑制M... 采用常规水热法在二维材料MXene(Ti_(3)AlC_(2))上原位生长多孔纳米立方体CoSe_(2),调控制备活性位点多、结构稳定的CoSe_(2)/MXene复合材料。采用SEM、TEM、XRD、XPS对复合材料的结构和形貌进行表征。结果显示,该复合材料不仅有效抑制MXene薄片的重新堆积,还可缓解CoSe_(2)充放电过程中的体积膨胀。将CoSe_(2)/MXene作为钠离子电池负极进行性能测试,表现出优秀的循环性能,在0.2 A/g电流密度时,复合材料循环100圈后的比容量仍可达497.3 mAh·g^(-1)。 展开更多
关键词 MXene CoSe_(2) 钠离子电池 负极材料
在线阅读 下载PDF
阳极材质对10 kA钕电解槽电热场分布的影响
20
作者 伍永福 鲍高战 +2 位作者 王日昕 刘中兴 栗志 《有色金属(冶炼部分)》 北大核心 2025年第9期106-116,共11页
基于麦克斯韦方程组,结合能斯特-普朗克方程和Butler-Volmer方程,构建了NdF3-LiF熔盐体系电解过程的电热场耦合数学模型。通过COMSOL软件模拟分析了不同阳极材料(半石墨质、半石墨化和石墨化)对10 kA钕电解槽电热性能的影响,并与实际生... 基于麦克斯韦方程组,结合能斯特-普朗克方程和Butler-Volmer方程,构建了NdF3-LiF熔盐体系电解过程的电热场耦合数学模型。通过COMSOL软件模拟分析了不同阳极材料(半石墨质、半石墨化和石墨化)对10 kA钕电解槽电热性能的影响,并与实际生产中石墨化阳极电解槽的现场测试数据进行对比验证。结果表明,三种阳极材料对应的槽内最大电流密度分别为23600、24200、24600 A/m^(2)。石墨化阳极电解槽的熔体电压降较半石墨质阳极电解槽降低310 mV,温度升高47 K。使用石墨化阳极材料能够显著提高电能利用效率,进而实现更高的经济效益,为钕电解槽的优化设计和生产实践提供了理论支持。 展开更多
关键词 10 kA钕电解槽 阳极材质 全息电热场 COMSOL模拟
在线阅读 下载PDF
上一页 1 2 87 下一页 到第
使用帮助 返回顶部