Ablation excited by current pulses is a very critical physical process in pulse plasma thrusters(PPT).Its effects on wall-plasma interaction directly determine the PPT performances.In order to reveal the process of th...Ablation excited by current pulses is a very critical physical process in pulse plasma thrusters(PPT).Its effects on wall-plasma interaction directly determine the PPT performances.In order to reveal the process of the ablated wall interaction with the discharge plasma in PPT,ablation models formulated by three different boundary conditions at the wall-plasma interface are studied.These are the two widely used high-speed evaporation models(Model-L and Model-M),and the recently developed Keida-Zaghloul model(Model-K)of the Knudsen layer that takes into account the internal degrees of freedom on the energy flux conservation.First,fundamental mechanisms of the three ablation models are clarified by comparative analysis in order to gain a comprehensive understanding of the wall-plasma interaction.Then,the applicability of different ablation models with the numerical solutions of LES-6 PPT is investigated in detail using magnetohydrodynamic(MHD)modeling.Results show that Model-L and Model-M are actually special cases of Model-K when a simplified jump conditions limited by high velocity at the vapor/plasma interface is used;A ratio of ablation rate in Model-L to that in Model-M is about 0.8at the same wall surface temperature,while it rises to 1 at different surface temperature determined by Model-L and Model-M in PPT.Even though Model-K solution requires significant computational time,it shows more accurate ablation feature for the wall-plasma interaction and possesses better computing precision of impulse bit during post-pulse which is useful for future studies of the late time ablation.展开更多
Taking the effect of finite soil layers below pile end into account,the longitudinal dynamic response of pile undergoing dynamic loading in layered soil was theoretically investigated.Firstly,finite soil layers below ...Taking the effect of finite soil layers below pile end into account,the longitudinal dynamic response of pile undergoing dynamic loading in layered soil was theoretically investigated.Firstly,finite soil layers below pile end are modeled as virtual soil pile whose cross-section area is the same as that of the pile and the soil layers surrounding the pile are described by the plane strain model.Then,by virtue of Laplace transform and impedance function transfer method,the analytical solution of longitudinal dynamic response at the pile head in frequency domain is yielded.Also,the semi-analytical solution in time domain undergoing half-cycle sine pulse at the pile head is obtained by means of inverse Laplace transform.Based on these solutions,a parametric study is conducted to analyze emphatically the effects of parameters of soil below pile end on velocity admittance and reflected wave signals at the pile head.Additionally,a comparison with other models with different supporting conditions from soil below pile end is performed to verify the model presented.展开更多
In this review,we discuss the structure and dynamics of the magnetospheric LowLatitude Boundary Layer(LLBL)based on recent results from multi-satellite missions Cluster and Double Star.This boundary layer,adjacent to ...In this review,we discuss the structure and dynamics of the magnetospheric LowLatitude Boundary Layer(LLBL)based on recent results from multi-satellite missions Cluster and Double Star.This boundary layer,adjacent to the magnetopause on the magnetospheric side,usually consists of a mixture of plasma of magnetospheric and magnetosheath origins,and plays an important role in the transfer of mass and energy from the solar wind into the magnetosphere and subsequent magnetospheric dynamics.During southward Interplanetary Magnetic Field(IMF)conditions,this boundary layer is generally considered to be formed as a result of the reconnection process between the IMF and magnetospheric magnetic field lines at the dayside magnetopause,and the structure and plasma properties inside the LLBL can be understood in terms of the time history since the reconnection process.During northward IMF conditions,the LLBL is usually thicker,and has more complex structure and topology.Recent observations confirm that the LLBL observed at the dayside can be formed by single lobe reconnection,dual lobe reconnection,or by sequential dual lobe reconnection,as well as partially by localized cross-field diffusion.The LLBL magnetic topology and plasma signatures inside the different sub-layers formed by these processes are discussed in this review.The role of the Kelvin-Helmholtz instability in the formation of the LLBL at the flank magnetopause is also discussed.Overall,we conclude that the LLBL observed at the flanks can be formed by the combination of processes,(dual)lobe reconnection and plasma mixing due to non-linear Kelvin-Helmholtz waves.展开更多
基金Project supported by Ph.D.Programs Foundation of Ministry of Education of China(20121101120004)Basic Research Foundation of Beijing Institute of Technology(20120142015)
文摘Ablation excited by current pulses is a very critical physical process in pulse plasma thrusters(PPT).Its effects on wall-plasma interaction directly determine the PPT performances.In order to reveal the process of the ablated wall interaction with the discharge plasma in PPT,ablation models formulated by three different boundary conditions at the wall-plasma interface are studied.These are the two widely used high-speed evaporation models(Model-L and Model-M),and the recently developed Keida-Zaghloul model(Model-K)of the Knudsen layer that takes into account the internal degrees of freedom on the energy flux conservation.First,fundamental mechanisms of the three ablation models are clarified by comparative analysis in order to gain a comprehensive understanding of the wall-plasma interaction.Then,the applicability of different ablation models with the numerical solutions of LES-6 PPT is investigated in detail using magnetohydrodynamic(MHD)modeling.Results show that Model-L and Model-M are actually special cases of Model-K when a simplified jump conditions limited by high velocity at the vapor/plasma interface is used;A ratio of ablation rate in Model-L to that in Model-M is about 0.8at the same wall surface temperature,while it rises to 1 at different surface temperature determined by Model-L and Model-M in PPT.Even though Model-K solution requires significant computational time,it shows more accurate ablation feature for the wall-plasma interaction and possesses better computing precision of impulse bit during post-pulse which is useful for future studies of the late time ablation.
基金Project(50879077) supported by the National Natural Science Foundation of China
文摘Taking the effect of finite soil layers below pile end into account,the longitudinal dynamic response of pile undergoing dynamic loading in layered soil was theoretically investigated.Firstly,finite soil layers below pile end are modeled as virtual soil pile whose cross-section area is the same as that of the pile and the soil layers surrounding the pile are described by the plane strain model.Then,by virtue of Laplace transform and impedance function transfer method,the analytical solution of longitudinal dynamic response at the pile head in frequency domain is yielded.Also,the semi-analytical solution in time domain undergoing half-cycle sine pulse at the pile head is obtained by means of inverse Laplace transform.Based on these solutions,a parametric study is conducted to analyze emphatically the effects of parameters of soil below pile end on velocity admittance and reflected wave signals at the pile head.Additionally,a comparison with other models with different supporting conditions from soil below pile end is performed to verify the model presented.
文摘In this review,we discuss the structure and dynamics of the magnetospheric LowLatitude Boundary Layer(LLBL)based on recent results from multi-satellite missions Cluster and Double Star.This boundary layer,adjacent to the magnetopause on the magnetospheric side,usually consists of a mixture of plasma of magnetospheric and magnetosheath origins,and plays an important role in the transfer of mass and energy from the solar wind into the magnetosphere and subsequent magnetospheric dynamics.During southward Interplanetary Magnetic Field(IMF)conditions,this boundary layer is generally considered to be formed as a result of the reconnection process between the IMF and magnetospheric magnetic field lines at the dayside magnetopause,and the structure and plasma properties inside the LLBL can be understood in terms of the time history since the reconnection process.During northward IMF conditions,the LLBL is usually thicker,and has more complex structure and topology.Recent observations confirm that the LLBL observed at the dayside can be formed by single lobe reconnection,dual lobe reconnection,or by sequential dual lobe reconnection,as well as partially by localized cross-field diffusion.The LLBL magnetic topology and plasma signatures inside the different sub-layers formed by these processes are discussed in this review.The role of the Kelvin-Helmholtz instability in the formation of the LLBL at the flank magnetopause is also discussed.Overall,we conclude that the LLBL observed at the flanks can be formed by the combination of processes,(dual)lobe reconnection and plasma mixing due to non-linear Kelvin-Helmholtz waves.