This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates wi...This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates with porosity.The novel sandwich plate consists of one homogenous ceramic core and two different functionally graded face sheets which can be widely applied in many fields of engineering and defence technology.The discrete governing equations of motion are carried out via Hamilton’s principle and finite element method.The computation program is coded in MATLAB software and used to study the mechanical behavior of the functionally graded sandwich plate with porosity.The present finite element algorithm can be employed to study the plates with arbitrary shape and boundary conditions.The obtained results are compared with available results in the literature to confirm the reliability of the present algorithm.Also,a comprehensive investigation of the effects of several parameters on the bending,free vibration,and buckling response of functionally graded sandwich plates is presented.The numerical results shows that the distribution of porosity plays significant role on the mechanical behavior of the functionally graded sandwich plates。展开更多
The bending and stress analysis of a functionally graded polymer composite plate reinforced with graphene platelets are studied in this paper.The governing equations are derived by using principle of virtual work for ...The bending and stress analysis of a functionally graded polymer composite plate reinforced with graphene platelets are studied in this paper.The governing equations are derived by using principle of virtual work for a plate which is rested on Pasternak’s foundation.Sinusoidal shear deformation theory is used to describe displacement field.Four different distribution patterns are employed in our analysis.The analytical solution is presented for a functionally graded plate to investigate the influence of important parameters.The numerical results are presented to show the deflection and stress results of the problem for four employed patterns in terms of geometric parameters such as number of layers,weight fraction and two parameters of Pasternak’s foundation.展开更多
Deformation can change the transition pathway of materials under high pressure,thus significantly affects physical and chemical properties of matters.However,accurate pressure calibration under deformation is challeng...Deformation can change the transition pathway of materials under high pressure,thus significantly affects physical and chemical properties of matters.However,accurate pressure calibration under deformation is challenging and thereby causes relatively large pressure uncertainties in deformation experiments,resulting in the synthesis of complex multiphase materials.Here,pressure generations of three types of deformation assemblies were well calibrated in a Walker-type largevolume press(LVP)by electrical resistance measurements combined with finite element simulations(FESs).Hard Al_(2)O_(3) or diamond pistons in shear and uniaxial deformation assemblies significantly increase the efficiency of pressure generation compared with the conventional quasi-hydrostatic assembly.The uniaxial deformation assembly using flat diamond pistons possesses the highest efficiency in these deformation assemblies.This finding is further confirmed by stress distribution analysis based on FESs.With this deformation assembly,we found shear can effectively promote the transformation of C60 into diamond under high pressure and realized the synthesis of phase-pure diamond at relatively moderate pressure and temperature conditions.The present developed techniques will help improve pressure efficiencies in LVP and explore the new physical and chemical properties of materials under deformation in both science and technology.展开更多
Deformation of water drops in shock-induced high-speed flows is investigated with a focus to the influence of primitive flow parameters on the rear-surface deformation features. Two typical deformation patterns are di...Deformation of water drops in shock-induced high-speed flows is investigated with a focus to the influence of primitive flow parameters on the rear-surface deformation features. Two typical deformation patterns are discovered through high-speed photography. A simple equation to evaluate the radial acceleration of the drop surface is derived. The combined use of this equation and outer flow simulation makes it possible for us to reconstruct the profiles of the early deformed drops. The results agree well with the experiments. Further analysis shows that the duration of flow establishment with respect to the overall breakup time shapes the rear side profile of the drop. Thereby the ratio of the two times, expressed as the square root of the density ratio, appears to be an effective indicator of the deformation features.展开更多
The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic found...The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs.展开更多
The vibration and instability of functionally graded material(FGM)sandwich cylindrical shells conveying fluid are investigated.The Navier-Stokes relation is used to describe the fluid pressure acting on the FGM sandwi...The vibration and instability of functionally graded material(FGM)sandwich cylindrical shells conveying fluid are investigated.The Navier-Stokes relation is used to describe the fluid pressure acting on the FGM sandwich shells.Based on the third-order shear deformation shell theory,the governing equations of the system are derived by using the Hamilton’s principle.To check the validity of the present analysis,the results are compared with those in previous studies for the special cases.Results manifest that the natural frequency of the fluid-conveying FGM sandwich shells increases with the rise of the core-to-thickness ratio and power-law exponent,while decreases with the rise of fluid density,radius-to-thickness ratio and length-to-radius ratio.The fluid-conveying FGM sandwich shells lose stability when the non-dimensional flow velocity falls in 2.1-2.5,which should be avoided in engineering application.展开更多
In this research,mechanical stress,static strain and deformation analyses of a cylindrical pressure vessel subjected to mechanical loads are presented.The kinematic relations are developed based on higherorder sinusoi...In this research,mechanical stress,static strain and deformation analyses of a cylindrical pressure vessel subjected to mechanical loads are presented.The kinematic relations are developed based on higherorder sinusoidal shear deformation theory.Thickness stretching formulation is accounted for more accurate analysis.The total transverse deflection is divided into bending,shear and thickness stretching parts in which the third term is responsible for change of deflection along the thickness direction.The axisymmetric formulations are derived through principle of virtual work.A parametric study is presented to investigate variation of stress and strain components along the thickness and longitudinal directions.To explore effect of thickness stretching model on the static results,a comparison between the present results with the available results of literature is presented.As an important output,effect of micro-scale parameter is studied on the static stress and strain distribution.展开更多
An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties ...An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums.展开更多
The present work investigates higher order stress,strain and deformation analyses of a shear deformable doubly curved shell manufactures by a Copper(Cu)core reinforced with graphene origami auxetic metamaterial subjec...The present work investigates higher order stress,strain and deformation analyses of a shear deformable doubly curved shell manufactures by a Copper(Cu)core reinforced with graphene origami auxetic metamaterial subjected to mechanical and thermal loads.The effective material properties of the graphene origami auxetic reinforced Cu matrix are developed using micromechanical models cooperate both material properties of graphene and Cu in terms of temperature,volume fraction and folding degree.The principle of virtual work is used to derive governing equations with accounting thermal loading.The numerical results are analytically obtained using Navier's technique to investigate impact of significant parameters such as thermal loading,graphene amount,folding degree and directional coordinate on the stress,strain and deformation responses of the structure.The graphene origami materials may be used in aerospace vehicles and structures and defence technology because of their low weight and high stiffness.A verification study is presented for approving the formulation,solution methodology and numerical results.展开更多
This article deals with evaluating the frequency response of functionally graded carbon nanotube reinforced magneto-electro-elastic(FG-CNTMEE)plates subjected to open and closed electro-magnetic circuit conditions.In ...This article deals with evaluating the frequency response of functionally graded carbon nanotube reinforced magneto-electro-elastic(FG-CNTMEE)plates subjected to open and closed electro-magnetic circuit conditions.In this regard finite element formulation has been derived.The plate kinematics adjudged via higher order shear deformation theory(HSDT)is considered for evaluation.The equations of motion are obtained with the help of Hamilton’s principle and solved using condensation technique.It is found that the convergence and accuracy of the present FE formulation is very good to address the vibration problem of FG-CNTMEE plate.For the first time,frequency response analysis of FG-CNTMEE plates considering the effect of various circuit conditions associated with parameters such as CNT distributions,volume fraction,skew angle,aspect ratio,length-to-thickness ratio and coupling fields has been carried out.The results of this article can serve as benchmark for future development and analysis of smart structures.展开更多
This article deals with investigating the effect of cut-outs on the natural frequencies of magneto-electroelastic(MEE)plates incorporating finite element methods based on higher order shear deformation theory(HSDT).In...This article deals with investigating the effect of cut-outs on the natural frequencies of magneto-electroelastic(MEE)plates incorporating finite element methods based on higher order shear deformation theory(HSDT).In order to consider the influence of cut-out,the energy of the cut-out domain is subtracted from the total energy of the entire plate.The governing equations of motions are derived through incorporating Hamilton’s principle and the solution is obtained using condensation technique.The proposed numerical formulation is verified with the results of previously published literature as well as the numerical software.In addition,this research focuses on evaluating the effect of geometrical skewness and boundary conditions on the frequency response.The influence of cut-outs on the degree of coupling between magnetic,electric and elastic fields is also investigated.展开更多
This paper focuses on the thermo-mechanical behaviors of functionally graded(FG)shape memory alloy(SMA)composite beams based on Timoshenko beam theory.The volume fraction of SMA fiber is graded in the thickness of bea...This paper focuses on the thermo-mechanical behaviors of functionally graded(FG)shape memory alloy(SMA)composite beams based on Timoshenko beam theory.The volume fraction of SMA fiber is graded in the thickness of beam according to a power-law function and the equivalent parameters are formulated.The governing differential equations,which can be solved by direct integration,are established by employing the composite laminated plate theory.The influences of FG parameter,ambient temperature and SMA fiber laying angle on the thermo-mechanical behaviors are numerically simulated and discussed under different boundary conditions.Results indicate that the neutral plane does not coincide with the middle plane of the composite beam and the distribution of martensite is asymmetric along the thickness.Both the increments of the functionally graded parameter and ambient temperature make the composite beam become stiffer.However,the influence of the SMA fiber laying angle can be negligent.This work can provide the theoretical basis for the design and application of FG SMA structures.展开更多
Since the multi-layered structures are widely used nowadays, and due to interesting applications of cylindrical shells, this study is dedicated to analyzing free vibrational behaviors of functionally graded saturated ...Since the multi-layered structures are widely used nowadays, and due to interesting applications of cylindrical shells, this study is dedicated to analyzing free vibrational behaviors of functionally graded saturated porous micro cylindrical shells with two nanocomposite skins. Based on Biot's assumptions, constitutive relations for the core are presented and effective properties of the skins are determined via the rule of mixture. A sinusoidal theory is used to capture the shear deformation effects, and to account for the scale effects, the modified couple stress theory is employed which suggests a material length-scale parameter for predicting the results in small-dimension. With the aid of extended form of Hamilton's principle for dynamic systems, differential equations of motion are extracted. Fourier series functions are used to obtain natural frequencies and after validating them, a set of parametric studies are carried out. The results show the significant effects of porosity and Skempton coefficient, pores placement patterns, CNTs addition and distribution patterns, temperature variations, material length-scale parameter and viscoelastic medium on the natural frequencies of the microstructure. The outcomes of this work could be used to design and manufacture more reliable micro cylindrical structures in thermo-dynamical environments.展开更多
This manuscript presents the comprehensive study of thickness stretching effects on the free vibration,static stability and bending of multilayer functionally graded(FG)carbon nanotubes reinforced composite(CNTRC)nano...This manuscript presents the comprehensive study of thickness stretching effects on the free vibration,static stability and bending of multilayer functionally graded(FG)carbon nanotubes reinforced composite(CNTRC)nanoplates.The nanoscale and microstructure influences are considered through a modified nonlocal strain gradient continuum model.Based on power-law functions,four different patterns of CNTs distribution are considered in this analysis,a uniform distribution UD,FG-V CNTRC,FG-X CNTRC,and FG-O CNTRC.A 3D kinematic shear deformation theory is proposed to include the stretching influence,which is neglected in classical theories.Hamilton's principle is applied to derive the governing equations of motion and associated boundary conditions.Analytical solutions are developed based on Galerkin method to solve the governing equilibrium equations based on the generalized higher-order shear deformation theory and the nonlocal strain gradient theory and get the static bending,buckling loads,and natural frequencies of nanoplates.Verification with previous works is presented.A detailed parametric analysis is carried out to highlight the impact of thickness stretching,length scale parameter(nonlocal),material scale parameter(gradient),CNTs distribution pattern,geometry of the plate,various boundary conditions and the total number of layers on the stresses,deformation,critical buckling loads and vibration frequencies.Many new results are also reported in the current study,which will serve as a benchmark for future research.展开更多
This article presents the investigation of nonlinear vibration analysis of tapered porous functionally graded skew(TPFGS)plate considering the effects of geometrical non-uniformities to optimize the thickness in the s...This article presents the investigation of nonlinear vibration analysis of tapered porous functionally graded skew(TPFGS)plate considering the effects of geometrical non-uniformities to optimize the thickness in the structural design.The TPFGS plate is analyzed considering linearly,bi-linearly,and exponentially varying thicknesses.The plate’s effective material properties are tailor-made using a modified power-law distribution in which gradation varies along the thickness direction of the TPFGS plate.Incorporating the non-linear finite element formulation to develop the kinematic equation’s displacement model for the TPFGS plate is based on the first-order shear deformation theory(FSDT)in conjunction with von Karman’s nonlinearity.The nonlinear governing equations are established by Hamilton’s principle.The direct iterative method is adopted to solve the nonlinear mathematical relations to obtain the nonlinear frequencies.The influence of the porosity distributions and porosity parameter indices on the nonlinear frequency responses of the TPFGS plate for different skew angles and variable thicknesses are studied for various geometrical parameters.The influence of taper ratio,variable thickness,skewness,porosity distributions,gradation,and boundary conditions on the plate’s nonlinear vibration is demonstrated.The nonlinear frequency analysis reveals that the geometrical nonuniformities and porosities significantly influence the porous functionally graded plates with varying thickness than the uniform thickness.Besides,exponentially and linearly variable thicknesses can be considered for the thickness optimizations of TPFGS plates in the structural design.展开更多
This paper develops electro-elastic relations of functionally graded cylindrical nanoshell integrated with intelligent layers subjected to multi-physics loads resting on elastic foundation.The piezoelectric layers are...This paper develops electro-elastic relations of functionally graded cylindrical nanoshell integrated with intelligent layers subjected to multi-physics loads resting on elastic foundation.The piezoelectric layers are actuated with external applied voltage.The nanocore is assumed in-homogeneous in which the material properties are changed continuously and gradually along radial direction.Third-order shear deformation theory is used for the description of kinematic relations and electric potential distribution is assumed as combination of a linear function along thickness direction to show applied voltage and a longitudinal distribution.Electro-elastic size-dependent constitutive relations are developed based on nonlocal elasticity theory and generalized Hooke’s law.The principle of virtual work is used to derive governing equations in terms of four functions along the axial and the radial directions and longitudinal electric potential function.The numerical results including radial and longitudinal displacements are presented in terms of basic input parameters of the integrated cylindrical nanoshell such as initial electric potential,small scale parameter,length to radius ratio and two parameters of foundation.It is concluded that both displacements are increased with an increase in small-scale parameter and a decrease in applied electric potential.展开更多
Because of its light weight, broadband, and adaptable properties, smart material has been widely applied in the active vibration control (AVC) of flexible structures. Based on a firstorder shear deformation theory, ...Because of its light weight, broadband, and adaptable properties, smart material has been widely applied in the active vibration control (AVC) of flexible structures. Based on a firstorder shear deformation theory, by coupling the electrical and mechanical operation, a 4-node quadrilateral piezoelectric composite element with 24 degrees of freedom for generalized displacements and one electrical potential degree of freedom per piezoelectric layer was derived. Dynamic characteristics of a beam with discontinuously distributed piezoelectric sensors and actuators were presented. A linear quadratic regulator (LQR) feedback controller was designed to suppress the vibration of the beam in the state space using the high precise direct (HPD) integration method.展开更多
In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order...In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order shear deformation theory(HSDT)to achieve the governing equations.The sandwich plates with the ultra-light feature of the auxetic honeycomb core layer(negative Poisson’s ratio)and reinforced by two laminated three-phase skin layers.The obtained results in our work are compared with other previously published to confirm accuracy and reliability.In addition,the effects of parameters such as geometrical and material parameters on the vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers are fully investigated.展开更多
Higher-order shear and normal deformation theory is used in this paper to account thickness stretching effect for free vibration analysis of the cylindrical micro/nano shell subjected to an applied voltage and uniform...Higher-order shear and normal deformation theory is used in this paper to account thickness stretching effect for free vibration analysis of the cylindrical micro/nano shell subjected to an applied voltage and uniform temperature rising.Size dependency is included in governing equations based on the modified couple stress theory.Hamilton’s principle is used to derive governing equations of the cylindrical micro/nano shell.Solution procedure is developed using Navier technique for simply-supported boundary conditions.The numerical results are presented to investigate the effect of significant parameters such as some dimensionless geometric parameters,material properties,applied voltages and temperature rising on the free vibration responses.展开更多
文摘This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates with porosity.The novel sandwich plate consists of one homogenous ceramic core and two different functionally graded face sheets which can be widely applied in many fields of engineering and defence technology.The discrete governing equations of motion are carried out via Hamilton’s principle and finite element method.The computation program is coded in MATLAB software and used to study the mechanical behavior of the functionally graded sandwich plate with porosity.The present finite element algorithm can be employed to study the plates with arbitrary shape and boundary conditions.The obtained results are compared with available results in the literature to confirm the reliability of the present algorithm.Also,a comprehensive investigation of the effects of several parameters on the bending,free vibration,and buckling response of functionally graded sandwich plates is presented.The numerical results shows that the distribution of porosity plays significant role on the mechanical behavior of the functionally graded sandwich plates。
基金the University of Kashan.(Grant Number:467893/0655)。
文摘The bending and stress analysis of a functionally graded polymer composite plate reinforced with graphene platelets are studied in this paper.The governing equations are derived by using principle of virtual work for a plate which is rested on Pasternak’s foundation.Sinusoidal shear deformation theory is used to describe displacement field.Four different distribution patterns are employed in our analysis.The analytical solution is presented for a functionally graded plate to investigate the influence of important parameters.The numerical results are presented to show the deflection and stress results of the problem for four employed patterns in terms of geometric parameters such as number of layers,weight fraction and two parameters of Pasternak’s foundation.
基金the National Natural Science Foundation of China(Grant Nos.42272041,41902034,52302043,12304015,52302043,and 12011530063)the National Major Science Facility Synergetic Extreme Condition User Facility Achievement Transformation Platform Construction(Grant No.2021FGWCXNLJSKJ01)+2 种基金the China Postdoctoral Science Foundation(Grant Nos.2022M720054 and 2023T160257)the National Key Research and Development Program of China(Grant No.2022YFB3706602)the Jilin Univer-sity High-level Innovation Team Foundation,China(Grant No.2021TD-05).
文摘Deformation can change the transition pathway of materials under high pressure,thus significantly affects physical and chemical properties of matters.However,accurate pressure calibration under deformation is challenging and thereby causes relatively large pressure uncertainties in deformation experiments,resulting in the synthesis of complex multiphase materials.Here,pressure generations of three types of deformation assemblies were well calibrated in a Walker-type largevolume press(LVP)by electrical resistance measurements combined with finite element simulations(FESs).Hard Al_(2)O_(3) or diamond pistons in shear and uniaxial deformation assemblies significantly increase the efficiency of pressure generation compared with the conventional quasi-hydrostatic assembly.The uniaxial deformation assembly using flat diamond pistons possesses the highest efficiency in these deformation assemblies.This finding is further confirmed by stress distribution analysis based on FESs.With this deformation assembly,we found shear can effectively promote the transformation of C60 into diamond under high pressure and realized the synthesis of phase-pure diamond at relatively moderate pressure and temperature conditions.The present developed techniques will help improve pressure efficiencies in LVP and explore the new physical and chemical properties of materials under deformation in both science and technology.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11102204,11572313 and 11621202the Natural Science Foundation of Anhui Province under Grant No 1608085MA16
文摘Deformation of water drops in shock-induced high-speed flows is investigated with a focus to the influence of primitive flow parameters on the rear-surface deformation features. Two typical deformation patterns are discovered through high-speed photography. A simple equation to evaluate the radial acceleration of the drop surface is derived. The combined use of this equation and outer flow simulation makes it possible for us to reconstruct the profiles of the early deformed drops. The results agree well with the experiments. Further analysis shows that the duration of flow establishment with respect to the overall breakup time shapes the rear side profile of the drop. Thereby the ratio of the two times, expressed as the square root of the density ratio, appears to be an effective indicator of the deformation features.
文摘The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs.
基金supported by the National Natural Science Foundation of China(Nos.11922205,12072201)the Fundamental Research Fund for the Central Universities(No.N2005019)。
文摘The vibration and instability of functionally graded material(FGM)sandwich cylindrical shells conveying fluid are investigated.The Navier-Stokes relation is used to describe the fluid pressure acting on the FGM sandwich shells.Based on the third-order shear deformation shell theory,the governing equations of the system are derived by using the Hamilton’s principle.To check the validity of the present analysis,the results are compared with those in previous studies for the special cases.Results manifest that the natural frequency of the fluid-conveying FGM sandwich shells increases with the rise of the core-to-thickness ratio and power-law exponent,while decreases with the rise of fluid density,radius-to-thickness ratio and length-to-radius ratio.The fluid-conveying FGM sandwich shells lose stability when the non-dimensional flow velocity falls in 2.1-2.5,which should be avoided in engineering application.
文摘In this research,mechanical stress,static strain and deformation analyses of a cylindrical pressure vessel subjected to mechanical loads are presented.The kinematic relations are developed based on higherorder sinusoidal shear deformation theory.Thickness stretching formulation is accounted for more accurate analysis.The total transverse deflection is divided into bending,shear and thickness stretching parts in which the third term is responsible for change of deflection along the thickness direction.The axisymmetric formulations are derived through principle of virtual work.A parametric study is presented to investigate variation of stress and strain components along the thickness and longitudinal directions.To explore effect of thickness stretching model on the static results,a comparison between the present results with the available results of literature is presented.As an important output,effect of micro-scale parameter is studied on the static stress and strain distribution.
文摘An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums.
基金supported by Scientific Research Project of Qiqihar University(145209130)supported by the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Grant No.2023LHMS05054 and 2023LHMS05017)+3 种基金the Inner Mongolia University of Technology Natural Science Foundation of China(Grant No.DC2200000903)the Program for Innovative Research Teams in Universities of the Inner Mongolia Autonomous Region of China(Grant No.NMGIRT2213)the key technological project of Inner Mongolia(Grant No.2021GG0255 and 2021GG0259)the Fundamental Research Funds for the directly affiliated Universities of Inner Mongolia Autonomous Region(Grant No.JY20220046)。
文摘The present work investigates higher order stress,strain and deformation analyses of a shear deformable doubly curved shell manufactures by a Copper(Cu)core reinforced with graphene origami auxetic metamaterial subjected to mechanical and thermal loads.The effective material properties of the graphene origami auxetic reinforced Cu matrix are developed using micromechanical models cooperate both material properties of graphene and Cu in terms of temperature,volume fraction and folding degree.The principle of virtual work is used to derive governing equations with accounting thermal loading.The numerical results are analytically obtained using Navier's technique to investigate impact of significant parameters such as thermal loading,graphene amount,folding degree and directional coordinate on the stress,strain and deformation responses of the structure.The graphene origami materials may be used in aerospace vehicles and structures and defence technology because of their low weight and high stiffness.A verification study is presented for approving the formulation,solution methodology and numerical results.
文摘This article deals with evaluating the frequency response of functionally graded carbon nanotube reinforced magneto-electro-elastic(FG-CNTMEE)plates subjected to open and closed electro-magnetic circuit conditions.In this regard finite element formulation has been derived.The plate kinematics adjudged via higher order shear deformation theory(HSDT)is considered for evaluation.The equations of motion are obtained with the help of Hamilton’s principle and solved using condensation technique.It is found that the convergence and accuracy of the present FE formulation is very good to address the vibration problem of FG-CNTMEE plate.For the first time,frequency response analysis of FG-CNTMEE plates considering the effect of various circuit conditions associated with parameters such as CNT distributions,volume fraction,skew angle,aspect ratio,length-to-thickness ratio and coupling fields has been carried out.The results of this article can serve as benchmark for future development and analysis of smart structures.
文摘This article deals with investigating the effect of cut-outs on the natural frequencies of magneto-electroelastic(MEE)plates incorporating finite element methods based on higher order shear deformation theory(HSDT).In order to consider the influence of cut-out,the energy of the cut-out domain is subtracted from the total energy of the entire plate.The governing equations of motions are derived through incorporating Hamilton’s principle and the solution is obtained using condensation technique.The proposed numerical formulation is verified with the results of previously published literature as well as the numerical software.In addition,this research focuses on evaluating the effect of geometrical skewness and boundary conditions on the frequency response.The influence of cut-outs on the degree of coupling between magnetic,electric and elastic fields is also investigated.
文摘This paper focuses on the thermo-mechanical behaviors of functionally graded(FG)shape memory alloy(SMA)composite beams based on Timoshenko beam theory.The volume fraction of SMA fiber is graded in the thickness of beam according to a power-law function and the equivalent parameters are formulated.The governing differential equations,which can be solved by direct integration,are established by employing the composite laminated plate theory.The influences of FG parameter,ambient temperature and SMA fiber laying angle on the thermo-mechanical behaviors are numerically simulated and discussed under different boundary conditions.Results indicate that the neutral plane does not coincide with the middle plane of the composite beam and the distribution of martensite is asymmetric along the thickness.Both the increments of the functionally graded parameter and ambient temperature make the composite beam become stiffer.However,the influence of the SMA fiber laying angle can be negligent.This work can provide the theoretical basis for the design and application of FG SMA structures.
文摘Since the multi-layered structures are widely used nowadays, and due to interesting applications of cylindrical shells, this study is dedicated to analyzing free vibrational behaviors of functionally graded saturated porous micro cylindrical shells with two nanocomposite skins. Based on Biot's assumptions, constitutive relations for the core are presented and effective properties of the skins are determined via the rule of mixture. A sinusoidal theory is used to capture the shear deformation effects, and to account for the scale effects, the modified couple stress theory is employed which suggests a material length-scale parameter for predicting the results in small-dimension. With the aid of extended form of Hamilton's principle for dynamic systems, differential equations of motion are extracted. Fourier series functions are used to obtain natural frequencies and after validating them, a set of parametric studies are carried out. The results show the significant effects of porosity and Skempton coefficient, pores placement patterns, CNTs addition and distribution patterns, temperature variations, material length-scale parameter and viscoelastic medium on the natural frequencies of the microstructure. The outcomes of this work could be used to design and manufacture more reliable micro cylindrical structures in thermo-dynamical environments.
基金supported by The Algerian General Directorate of Scientific Research and Technological Development(DGRSDT)University of Mustapha Stambouli of Mascara(UMS Mascara)in Algeria。
文摘This manuscript presents the comprehensive study of thickness stretching effects on the free vibration,static stability and bending of multilayer functionally graded(FG)carbon nanotubes reinforced composite(CNTRC)nanoplates.The nanoscale and microstructure influences are considered through a modified nonlocal strain gradient continuum model.Based on power-law functions,four different patterns of CNTs distribution are considered in this analysis,a uniform distribution UD,FG-V CNTRC,FG-X CNTRC,and FG-O CNTRC.A 3D kinematic shear deformation theory is proposed to include the stretching influence,which is neglected in classical theories.Hamilton's principle is applied to derive the governing equations of motion and associated boundary conditions.Analytical solutions are developed based on Galerkin method to solve the governing equilibrium equations based on the generalized higher-order shear deformation theory and the nonlocal strain gradient theory and get the static bending,buckling loads,and natural frequencies of nanoplates.Verification with previous works is presented.A detailed parametric analysis is carried out to highlight the impact of thickness stretching,length scale parameter(nonlocal),material scale parameter(gradient),CNTs distribution pattern,geometry of the plate,various boundary conditions and the total number of layers on the stresses,deformation,critical buckling loads and vibration frequencies.Many new results are also reported in the current study,which will serve as a benchmark for future research.
文摘This article presents the investigation of nonlinear vibration analysis of tapered porous functionally graded skew(TPFGS)plate considering the effects of geometrical non-uniformities to optimize the thickness in the structural design.The TPFGS plate is analyzed considering linearly,bi-linearly,and exponentially varying thicknesses.The plate’s effective material properties are tailor-made using a modified power-law distribution in which gradation varies along the thickness direction of the TPFGS plate.Incorporating the non-linear finite element formulation to develop the kinematic equation’s displacement model for the TPFGS plate is based on the first-order shear deformation theory(FSDT)in conjunction with von Karman’s nonlinearity.The nonlinear governing equations are established by Hamilton’s principle.The direct iterative method is adopted to solve the nonlinear mathematical relations to obtain the nonlinear frequencies.The influence of the porosity distributions and porosity parameter indices on the nonlinear frequency responses of the TPFGS plate for different skew angles and variable thicknesses are studied for various geometrical parameters.The influence of taper ratio,variable thickness,skewness,porosity distributions,gradation,and boundary conditions on the plate’s nonlinear vibration is demonstrated.The nonlinear frequency analysis reveals that the geometrical nonuniformities and porosities significantly influence the porous functionally graded plates with varying thickness than the uniform thickness.Besides,exponentially and linearly variable thicknesses can be considered for the thickness optimizations of TPFGS plates in the structural design.
基金supported by the Research team project of Nanning University(2018KYTD03)the Science and Technology Planning Project of Yongning Zone of Nanning(20180205A)Henan Province Doctor Startup Fund of China under Grant No.2012BZ01.
文摘This paper develops electro-elastic relations of functionally graded cylindrical nanoshell integrated with intelligent layers subjected to multi-physics loads resting on elastic foundation.The piezoelectric layers are actuated with external applied voltage.The nanocore is assumed in-homogeneous in which the material properties are changed continuously and gradually along radial direction.Third-order shear deformation theory is used for the description of kinematic relations and electric potential distribution is assumed as combination of a linear function along thickness direction to show applied voltage and a longitudinal distribution.Electro-elastic size-dependent constitutive relations are developed based on nonlocal elasticity theory and generalized Hooke’s law.The principle of virtual work is used to derive governing equations in terms of four functions along the axial and the radial directions and longitudinal electric potential function.The numerical results including radial and longitudinal displacements are presented in terms of basic input parameters of the integrated cylindrical nanoshell such as initial electric potential,small scale parameter,length to radius ratio and two parameters of foundation.It is concluded that both displacements are increased with an increase in small-scale parameter and a decrease in applied electric potential.
基金Supported by the National Natural Science Foundation of China (51079027).
文摘Because of its light weight, broadband, and adaptable properties, smart material has been widely applied in the active vibration control (AVC) of flexible structures. Based on a firstorder shear deformation theory, by coupling the electrical and mechanical operation, a 4-node quadrilateral piezoelectric composite element with 24 degrees of freedom for generalized displacements and one electrical potential degree of freedom per piezoelectric layer was derived. Dynamic characteristics of a beam with discontinuously distributed piezoelectric sensors and actuators were presented. A linear quadratic regulator (LQR) feedback controller was designed to suppress the vibration of the beam in the state space using the high precise direct (HPD) integration method.
文摘In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order shear deformation theory(HSDT)to achieve the governing equations.The sandwich plates with the ultra-light feature of the auxetic honeycomb core layer(negative Poisson’s ratio)and reinforced by two laminated three-phase skin layers.The obtained results in our work are compared with other previously published to confirm accuracy and reliability.In addition,the effects of parameters such as geometrical and material parameters on the vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers are fully investigated.
基金The authors would like to thank the Iranian Nanotechnology Development Committee for their financial support.
文摘Higher-order shear and normal deformation theory is used in this paper to account thickness stretching effect for free vibration analysis of the cylindrical micro/nano shell subjected to an applied voltage and uniform temperature rising.Size dependency is included in governing equations based on the modified couple stress theory.Hamilton’s principle is used to derive governing equations of the cylindrical micro/nano shell.Solution procedure is developed using Navier technique for simply-supported boundary conditions.The numerical results are presented to investigate the effect of significant parameters such as some dimensionless geometric parameters,material properties,applied voltages and temperature rising on the free vibration responses.