We obtain some normality criteria of families of meromorphic functions sharing values related to Hayman conjecture, which improves some earlier related results.
In this article, we study the problems of Borel's directions of meromorphic func- tions concerning shared values and prove that if two meromorphie functions of infinite order share three distinct values, their Borel...In this article, we study the problems of Borel's directions of meromorphic func- tions concerning shared values and prove that if two meromorphie functions of infinite order share three distinct values, their Borel's directions are same.展开更多
We studied the normality conditions in families of meromorphic functions, improved the results of Fang and Zalcman [Fang ML, Zalcman L, Normal families and shared values of meromorphic functions, Computational Methods...We studied the normality conditions in families of meromorphic functions, improved the results of Fang and Zalcman [Fang ML, Zalcman L, Normal families and shared values of meromorphic functions, Computational Methods and Function Theory, 2001, 1 (1): 289-299], and generalized two new normality criterions. Let F be a family of meromorphic functions in a domain D, a a non-zero finite complex number, B a positive real number, and k and m two positive integers satisfying m〉2k+4. If every function denoted by f belonging to F has only zeros with multiplicity at least k and satisfies f^m(z)f^(k)(Z)=α→ |^f(k)(z)| ≤B or f^m(z)f^(k)(z)=α→|f(z)| ≥, then F is normal in D.展开更多
Let F be a family of functions meromorphic in a domain D, let m, n k , k be three positive integers and b be a finite nonzero complex number. Suppose that, (1) for eachf∈F, all zeros of f have multiplicities at least...Let F be a family of functions meromorphic in a domain D, let m, n k , k be three positive integers and b be a finite nonzero complex number. Suppose that, (1) for eachf∈F, all zeros of f have multiplicities at least k ; (2) for each pair of functions f, g ∈F,P(f)H(f) and P(g)H(g) share b, where P(f) and H(f) were defined as (1.1) and (1.2) and nk ≥ max 1≤i≤k-1 {n i }; (3) m ≥ 2 or nk ≥ 2, k ≥ 2, then F is normal in D.展开更多
We deal with the problem of entire functions sharing one value weakly. Moreover, we improve and generalize some former results obtained by J.-F.Chen, et al. [6], Y.Xu and H.L.Qiu [4], M.L. Fang [5], C.C. Yang, and X.H...We deal with the problem of entire functions sharing one value weakly. Moreover, we improve and generalize some former results obtained by J.-F.Chen, et al. [6], Y.Xu and H.L.Qiu [4], M.L. Fang [5], C.C. Yang, and X.H. Hua [3].展开更多
In this paper, we define the shared value of an algebroid function and its derivative on its Riemann surface. By considering the relationship between the shared values and the branch points of algebroid functions and ...In this paper, we define the shared value of an algebroid function and its derivative on its Riemann surface. By considering the relationship between the shared values and the branch points of algebroid functions and their derivatives, we obtain some uniqueness theorems of algebroid functions sharing values with their derivatives, which extend 3 IM shared values theorem of nonconstant meromorphic functions and their derivatives obtained by Mues-Steinmetz and Gundersen.展开更多
In this article, we study the uniqueness question of nonconstant meromorphic functions whose nonlinear differential polynomials share 1 or have the same fixed points in an angular domain. The results in this article i...In this article, we study the uniqueness question of nonconstant meromorphic functions whose nonlinear differential polynomials share 1 or have the same fixed points in an angular domain. The results in this article improve Theorem 1 of Yang and Hua [26], and improve Theorem 1 of Fang and Qiu [6].展开更多
This paper investigate the uniqueness problems for meromorphic functions that share three values CM and proves a uniqueness theorem on this topic which can be used to improve some previous related results.
In this paper,we study normal families of holomorphic function concerning shared a polynomial.Let F be a family of holomorphic functions in a domain D,k(2)be a positive integer,K be a positive number andα(z)be a poly...In this paper,we study normal families of holomorphic function concerning shared a polynomial.Let F be a family of holomorphic functions in a domain D,k(2)be a positive integer,K be a positive number andα(z)be a polynomial of degree p(p 1).For each f∈F and z∈D,if f and f sharedα(z)CM and|f(k)(z)|K whenever f(z)-α(z)=0 in D, then F is normal in D.展开更多
In this paper, we study the normality criteria of meromorphic functions concerning shared fixed-points, we obtain: Let F be a family of meromorphic functions defined in a domain D. Let n, k ≥ 2 be two positive intege...In this paper, we study the normality criteria of meromorphic functions concerning shared fixed-points, we obtain: Let F be a family of meromorphic functions defined in a domain D. Let n, k ≥ 2 be two positive integers. For every f ∈ F, all of whose zeros have multiplicity at least (nk+2)/(n-1). If f(f(k))nand g(g(k))nshare z in D for each pair of functions f and g, then F is normal.展开更多
We studied the normality criterion for families of meromorphic functions related to shared sets. Let F be a family of meromorphic functions on the unit disc △, a and b be distinct non-zero values, S={a,b}, and k be a...We studied the normality criterion for families of meromorphic functions related to shared sets. Let F be a family of meromorphic functions on the unit disc △, a and b be distinct non-zero values, S={a,b}, and k be a positive integer. If for every f∈ F, i) the zeros of f(z) have a multiplicity of at least k+ 1, and ii) E^-f(k)(S) lohtain in E^-f(S), then F is normal on .4. At the same time, the corresponding results of normal function are also proved.展开更多
This paper deals with problems of the uniqueness of entire functions that share one pair of values with their derivatives. The results in this paper generalize and improve a result of Jank, Mues and Volkmann, a result...This paper deals with problems of the uniqueness of entire functions that share one pair of values with their derivatives. The results in this paper generalize and improve a result of Jank, Mues and Volkmann, a result of YANG L Z and a result of R Brück.展开更多
A uniqueness theorem for entire functions sharing one finite complex value with weight two is proved by using Nevanlinna theory , and this improves the result of Fang and Hua.
In this paper,with the idea of weighted sharing values,we deal with the problem of uniqueness of mesomorphic functions sharing three weighted values.We obtain some theorems which improve the results of H X Yi and W R ...In this paper,with the idea of weighted sharing values,we deal with the problem of uniqueness of mesomorphic functions sharing three weighted values.We obtain some theorems which improve the results of H X Yi and W R L.展开更多
In this paper, we investigate uniqueness problems of differential polynomials of meromorphic functions. Let a, b be non-zero constants and let n, k be positive integers satisfying n ≥ 3k + 12. If f^n+ af^(k)and ...In this paper, we investigate uniqueness problems of differential polynomials of meromorphic functions. Let a, b be non-zero constants and let n, k be positive integers satisfying n ≥ 3k + 12. If f^n+ af^(k)and g^n+ ag^(k)share b CM and the b-points of f^n+ af^(k)are not the zeros of f and g, then f and g are either equal or closely related.展开更多
This paper deals with the problem of uniqueness of meromorphic functions with two deficient values and obtains a result which is an improvement of that of F.Gross and Yi Hongxun.
For a meromorphic function f, let N(l+1(r, 3) denote the counting function of zeros of f of order 1 at least. Let f be a nonconstant meromorphic function, such that N(r,f) =S(r,f). Denote F = fn. Suppose that ...For a meromorphic function f, let N(l+1(r, 3) denote the counting function of zeros of f of order 1 at least. Let f be a nonconstant meromorphic function, such that N(r,f) =S(r,f). Denote F = fn. Suppose that F andF' share 1 CM. If(l) n 〉 3, or (2) n = 2 and N(r, 3) = O(N(3(r, 1/f)), then, F = F', and f assumes the form l(z) = ce 1/nz where c is a nonzero constant. This main result of this article gives a positive answer to a question raised by Zhang and Yang [1] for the meromorphic functions case in some sense. And a relative result is proved.展开更多
In this article, we mainly devote to proving uniqueness results for entire functionssharing one small function CM with their shift and difference operator simultaneously. Letf(z) be a nonconstant entire function of ...In this article, we mainly devote to proving uniqueness results for entire functionssharing one small function CM with their shift and difference operator simultaneously. Letf(z) be a nonconstant entire function of finite order, c be a nonzero finite complex constant, and n be a positive integer. If f(z), f(z+c), and △n cf(z) share 0 CM, then f(z+c)≡Af(z), where A(≠0) is a complex constant. Moreover, let a(z), b(z)( O) ∈ S(f) be periodic entire functions with period c and if f(z) - a(z), f(z + c) - a(z), △cn f(z) - b(z) share 0 CM, then f(z + c) ≡ f(z).展开更多
Let F be a family of mermorphic functions in a domain D, and let a, b, c be complex numbers, a ≠ b. If for each f ∈ F, the zeros of f-c are of multiplicity ≥ k + 1, and -↑Ef(k)(a) belong to -↑Ef (a), -↑Ef...Let F be a family of mermorphic functions in a domain D, and let a, b, c be complex numbers, a ≠ b. If for each f ∈ F, the zeros of f-c are of multiplicity ≥ k + 1, and -↑Ef(k)(a) belong to -↑Ef (a), -↑Ef(k)(b)belong to -↑Ef (b), then F is normal in D.展开更多
We prove an oscillation theorem of two meromorphic functions whose derivatives share four values IM. From this we obtain some uniqueness theorems, which improve the corresponding results given by Yang [16] and Qiu [10...We prove an oscillation theorem of two meromorphic functions whose derivatives share four values IM. From this we obtain some uniqueness theorems, which improve the corresponding results given by Yang [16] and Qiu [10], and supplement results given by Nevanlinna [9] and Gundersen [3, 4]. Some examples are provided to show that the results in this paper are best possible.展开更多
基金supported by Nature Science Foundation of China(11461070),supported by Nature Science Foundation of China(11271227)PCSIRT(IRT1264)
文摘We obtain some normality criteria of families of meromorphic functions sharing values related to Hayman conjecture, which improves some earlier related results.
基金supported by the National Natural Science Foundation of China(11171013)
文摘In this article, we study the problems of Borel's directions of meromorphic func- tions concerning shared values and prove that if two meromorphie functions of infinite order share three distinct values, their Borel's directions are same.
文摘We studied the normality conditions in families of meromorphic functions, improved the results of Fang and Zalcman [Fang ML, Zalcman L, Normal families and shared values of meromorphic functions, Computational Methods and Function Theory, 2001, 1 (1): 289-299], and generalized two new normality criterions. Let F be a family of meromorphic functions in a domain D, a a non-zero finite complex number, B a positive real number, and k and m two positive integers satisfying m〉2k+4. If every function denoted by f belonging to F has only zeros with multiplicity at least k and satisfies f^m(z)f^(k)(Z)=α→ |^f(k)(z)| ≤B or f^m(z)f^(k)(z)=α→|f(z)| ≥, then F is normal in D.
基金Foundation item: Supported by the NNSF of China(11071083) Supported by the National Natural Science Foundation of Tianyuan Foundation(11126267)
文摘Let F be a family of functions meromorphic in a domain D, let m, n k , k be three positive integers and b be a finite nonzero complex number. Suppose that, (1) for eachf∈F, all zeros of f have multiplicities at least k ; (2) for each pair of functions f, g ∈F,P(f)H(f) and P(g)H(g) share b, where P(f) and H(f) were defined as (1.1) and (1.2) and nk ≥ max 1≤i≤k-1 {n i }; (3) m ≥ 2 or nk ≥ 2, k ≥ 2, then F is normal in D.
基金supported by NSF of Fujian Province,China(S0750013),supported by NSF of Fujian Province,China(2008J0190)the Research Foundation of Ningde Normal University(2008J001)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘We deal with the problem of entire functions sharing one value weakly. Moreover, we improve and generalize some former results obtained by J.-F.Chen, et al. [6], Y.Xu and H.L.Qiu [4], M.L. Fang [5], C.C. Yang, and X.H. Hua [3].
基金supported by NSF of China (11209119511171119+1 种基金11101096)the STP of Education Department of Jiangxi Province,China (GJJ12179)
文摘In this paper, we define the shared value of an algebroid function and its derivative on its Riemann surface. By considering the relationship between the shared values and the branch points of algebroid functions and their derivatives, we obtain some uniqueness theorems of algebroid functions sharing values with their derivatives, which extend 3 IM shared values theorem of nonconstant meromorphic functions and their derivatives obtained by Mues-Steinmetz and Gundersen.
基金supported by the NSFC(11171184)the NSF of Shandong Province,China(Z2008A01)
文摘In this article, we study the uniqueness question of nonconstant meromorphic functions whose nonlinear differential polynomials share 1 or have the same fixed points in an angular domain. The results in this article improve Theorem 1 of Yang and Hua [26], and improve Theorem 1 of Fang and Qiu [6].
基金Supported by the NSF of China(10371065)Supported by the NSF of Zhejiang Province (M103006)
文摘This paper investigate the uniqueness problems for meromorphic functions that share three values CM and proves a uniqueness theorem on this topic which can be used to improve some previous related results.
基金Supported by the Scientific Research Starting Foundation for Master and Ph.D.of Honghe University(XSS08012)Supported by Scientific Research Fund of Yunnan Provincial Education Department of China Grant(09C0206)
文摘In this paper,we study normal families of holomorphic function concerning shared a polynomial.Let F be a family of holomorphic functions in a domain D,k(2)be a positive integer,K be a positive number andα(z)be a polynomial of degree p(p 1).For each f∈F and z∈D,if f and f sharedα(z)CM and|f(k)(z)|K whenever f(z)-α(z)=0 in D, then F is normal in D.
文摘In this paper, we study the normality criteria of meromorphic functions concerning shared fixed-points, we obtain: Let F be a family of meromorphic functions defined in a domain D. Let n, k ≥ 2 be two positive integers. For every f ∈ F, all of whose zeros have multiplicity at least (nk+2)/(n-1). If f(f(k))nand g(g(k))nshare z in D for each pair of functions f and g, then F is normal.
文摘We studied the normality criterion for families of meromorphic functions related to shared sets. Let F be a family of meromorphic functions on the unit disc △, a and b be distinct non-zero values, S={a,b}, and k be a positive integer. If for every f∈ F, i) the zeros of f(z) have a multiplicity of at least k+ 1, and ii) E^-f(k)(S) lohtain in E^-f(S), then F is normal on .4. At the same time, the corresponding results of normal function are also proved.
文摘This paper deals with problems of the uniqueness of entire functions that share one pair of values with their derivatives. The results in this paper generalize and improve a result of Jank, Mues and Volkmann, a result of YANG L Z and a result of R Brück.
文摘A uniqueness theorem for entire functions sharing one finite complex value with weight two is proved by using Nevanlinna theory , and this improves the result of Fang and Hua.
文摘In this paper,with the idea of weighted sharing values,we deal with the problem of uniqueness of mesomorphic functions sharing three weighted values.We obtain some theorems which improve the results of H X Yi and W R L.
基金supported by the NNSF(11201014,11171013,11126036,11371225)the YWF-14-SXXY-008,YWF-ZY-302854 of Beihang Universitysupported by the youth talent program of Beijing(29201443)
文摘In this paper, we investigate uniqueness problems of differential polynomials of meromorphic functions. Let a, b be non-zero constants and let n, k be positive integers satisfying n ≥ 3k + 12. If f^n+ af^(k)and g^n+ ag^(k)share b CM and the b-points of f^n+ af^(k)are not the zeros of f and g, then f and g are either equal or closely related.
文摘This paper deals with the problem of uniqueness of meromorphic functions with two deficient values and obtains a result which is an improvement of that of F.Gross and Yi Hongxun.
基金supported by NNSF of China(11171013)Fundamental Research Funds for the Central Universities NO.300414supported by the Innovation Foundation of BUAA for Ph.D.Candidates
文摘For a meromorphic function f, let N(l+1(r, 3) denote the counting function of zeros of f of order 1 at least. Let f be a nonconstant meromorphic function, such that N(r,f) =S(r,f). Denote F = fn. Suppose that F andF' share 1 CM. If(l) n 〉 3, or (2) n = 2 and N(r, 3) = O(N(3(r, 1/f)), then, F = F', and f assumes the form l(z) = ce 1/nz where c is a nonzero constant. This main result of this article gives a positive answer to a question raised by Zhang and Yang [1] for the meromorphic functions case in some sense. And a relative result is proved.
基金supported by the Natural Science Foundation of Guangdong Province in China(2014A030313422,2016A030310106,2016A030313745)
文摘In this article, we mainly devote to proving uniqueness results for entire functionssharing one small function CM with their shift and difference operator simultaneously. Letf(z) be a nonconstant entire function of finite order, c be a nonzero finite complex constant, and n be a positive integer. If f(z), f(z+c), and △n cf(z) share 0 CM, then f(z+c)≡Af(z), where A(≠0) is a complex constant. Moreover, let a(z), b(z)( O) ∈ S(f) be periodic entire functions with period c and if f(z) - a(z), f(z + c) - a(z), △cn f(z) - b(z) share 0 CM, then f(z + c) ≡ f(z).
文摘Let F be a family of mermorphic functions in a domain D, and let a, b, c be complex numbers, a ≠ b. If for each f ∈ F, the zeros of f-c are of multiplicity ≥ k + 1, and -↑Ef(k)(a) belong to -↑Ef (a), -↑Ef(k)(b)belong to -↑Ef (b), then F is normal in D.
基金supported by the NSFC (11171184), the NSFC(10771121),the NSFC (40776006) the NSFC & RFBR (Joint Project) (10911120056),the NSF of Shandong Province, China (Z2008A01), and the NSF of Shandong Province, China (ZR2009AM008)
文摘We prove an oscillation theorem of two meromorphic functions whose derivatives share four values IM. From this we obtain some uniqueness theorems, which improve the corresponding results given by Yang [16] and Qiu [10], and supplement results given by Nevanlinna [9] and Gundersen [3, 4]. Some examples are provided to show that the results in this paper are best possible.