Affinity propagation(AP)is a classic clustering algorithm.To improve the classical AP algorithms,we propose a clustering algorithm namely,adaptive spectral affinity propagation(AdaSAP).In particular,we discuss why AP ...Affinity propagation(AP)is a classic clustering algorithm.To improve the classical AP algorithms,we propose a clustering algorithm namely,adaptive spectral affinity propagation(AdaSAP).In particular,we discuss why AP is not suitable for non-spherical clusters and present a unifying view of nine famous arbitrary-shaped clustering algorithms.We propose a strategy of extending AP in non-spherical clustering by constructing category similarity of objects.Leveraging the monotonicity that the clusters’number increases with the self-similarity in AP,we propose a model selection procedure that can determine the number of clusters adaptively.For the parameters introduced by extending AP in non-spherical clustering,we provide a grid-evolving strategy to optimize them automatically.The effectiveness of AdaSAP is evaluated by experiments on both synthetic datasets and real-world clustering tasks.Experimental results validate that the superiority of AdaSAP over benchmark algorithms like the classical AP and spectral clustering algorithms.展开更多
为应对大规模分布式光伏(photovoltaic,PV)接入引起的主动配电网电压越限问题,降低控制策略的时序复杂性,提出一种考虑节点功率储备与节点影响力(global importance of each node,GIN)的主动配电网动态集群电压控制方法。首先,通过考虑...为应对大规模分布式光伏(photovoltaic,PV)接入引起的主动配电网电压越限问题,降低控制策略的时序复杂性,提出一种考虑节点功率储备与节点影响力(global importance of each node,GIN)的主动配电网动态集群电压控制方法。首先,通过考虑系统各节点的功率储备度,定义聚类算法的电压灵敏度-功率储备度(voltage sensitivity-power reserve,VS-PR)综合电气距离量度。进而,以GIN算法改进亲和力传播(affinity propagation,AP)聚类算法,实现网络集群划分与主导节点选取。然后,建立主动配电网集群电压控制模型,并通过动态粒子群算法(dynamic particle swarm optimization,D-PSO)进行模型求解。最后,通过建立基于MATLAB 2021b平台的IEEE 33节点仿真算例对比分析,验证了所提动态集群划分与电压控制方法的正确性和有效性。展开更多
基金This work was supported by the National Natural Science Foundation of China(71771034,71901011,71971039)the Scientific and Technological Innovation Foundation of Dalian(2018J11CY009).
文摘Affinity propagation(AP)is a classic clustering algorithm.To improve the classical AP algorithms,we propose a clustering algorithm namely,adaptive spectral affinity propagation(AdaSAP).In particular,we discuss why AP is not suitable for non-spherical clusters and present a unifying view of nine famous arbitrary-shaped clustering algorithms.We propose a strategy of extending AP in non-spherical clustering by constructing category similarity of objects.Leveraging the monotonicity that the clusters’number increases with the self-similarity in AP,we propose a model selection procedure that can determine the number of clusters adaptively.For the parameters introduced by extending AP in non-spherical clustering,we provide a grid-evolving strategy to optimize them automatically.The effectiveness of AdaSAP is evaluated by experiments on both synthetic datasets and real-world clustering tasks.Experimental results validate that the superiority of AdaSAP over benchmark algorithms like the classical AP and spectral clustering algorithms.