Bilayer membranes self-assembled from amphiphilic molecules such as lipids, surfactants, and block copolymers are ubiquitous in biological and physiochemical systems. The shape and structure of bilayer membranes depen...Bilayer membranes self-assembled from amphiphilic molecules such as lipids, surfactants, and block copolymers are ubiquitous in biological and physiochemical systems. The shape and structure of bilayer membranes depend crucially on their mechanical properties such as surface tension, bending moduli, and line tension. Understanding how the molecular properties of the amphiphiles determine the structure and mechanics of the self-assembled bilayers requires a molecularly detailed theoretical framework. The self-consistent field theory provides such a theoretical framework, which is capable of accurately predicting the mechanical parameters of self-assembled bilayer membranes. In this mini review we summarize the formulation of the self-consistent field theory, as exemplified by a model system composed of flexible amphiphilic chains dissolved in hydrophilic polymeric solvents, and its application to the study of self-assembled bilayer membranes.展开更多
The adsorption of flexible polyelectrolyte (PE) with the smeared charge distribution onto an oppositely charged sphere immersed in a PE solution is studied numerically with the continuum self-consistent field theory...The adsorption of flexible polyelectrolyte (PE) with the smeared charge distribution onto an oppositely charged sphere immersed in a PE solution is studied numerically with the continuum self-consistent field theory. The power law scaling relationships between the boundary layer thickness and the surface charge density and the charge fraction of PE chains revealed in the study are in good agreement with the existing analytical result. The curvature effect on the degree of charge compensation of the total amount of charges on the adsorbed PE chains over the surface charges is examined, and a clear understanding of it based on the dependences of the degree of charge compensation on the surface charge density and the charge fraction of PE chains is established.展开更多
We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implemen...We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implementedthe charge self-consistent DFT+DMFT formalism by interfacing a full-potential all-electron DFT code with threehybridization expansion-based continuous-time quantum Monte Carlo impurity solvers.The benchmarks on several 3d,4fand 5f strongly correlated electron systems validated our formalism and implementation.Furthermore,within the LCANOframework,our formalism is general and the code architecture is extensible,so it can work as a bridge merging differentLCNAO DFT packages and impurity solvers to do charge self-consistent DFT+DMFT calculations.展开更多
Fractional molecular field theory(FMFT)is a phenomenological theory that describes phase transitions in crystals with randomly distributed components,such as the relaxor-ferroelectrics and spin glasses.In order to ver...Fractional molecular field theory(FMFT)is a phenomenological theory that describes phase transitions in crystals with randomly distributed components,such as the relaxor-ferroelectrics and spin glasses.In order to verify the feasibility of this theory,this paper fits it to the Monte Carlo simulations of specific heat and susceptibility versus temperature of two-dimensional(2D)random-site Ising model(2D-RSIM).The results indicate that the FMFT deviates from the 2D-RSIM significantly.The main reason for the deviation is that the 2D-RSIM is a typical system of component random distribution,where the real order parameter is spatially heterogeneous and has no symmetry of space translation,but the basic assumption of FMFT means that the parameter is spatially uniform and has symmetry of space translation.展开更多
Transition metal oxide cathodes such as layered Li Co O_(2),spinel Li Mn_(2)O_(4) and olivine Li Fe PO4 have been commercialized for several decades and widely used in the rechargeable Li-ion batteries(LIBs).While gre...Transition metal oxide cathodes such as layered Li Co O_(2),spinel Li Mn_(2)O_(4) and olivine Li Fe PO4 have been commercialized for several decades and widely used in the rechargeable Li-ion batteries(LIBs).While great theoretical efforts have been made using the density functional theory(DFT)method,leading to insightful understanding covering materials stability and functional properties,the lack of consistency in choices of functionals and/or convergence criteria makes it somewhat difficult to compare results.It is therefore highly useful to assess these established systems towards self-consistency,thus offering a reliable working basis for theoretical formulation of novel cathodes.Here in this work,we have carried out systematic DFT calculations on the basis of recently established framework covering both thermodynamic stability,functional properties and associated mechanisms.Efforts have been made in selfconsistent selection of exchange-correlation(XC)functionals in terms of dependable accuracy with affordable computational cost,which is essential for high-throughput first-principles calculations.The outcome of the current work on three established cathode systems is in very good agreement with experimental data,and the methodology is to provide a solid basis for designing novel cathode materials without using costing non-local exchange-correlation functionals for structure-energy calculations.展开更多
The relativistic interaction of charged particle beams with a circularly polarized electromagnetic wave propagating along a uniform guiding magnetic field in the tunneling of a dielectric medium is analyzed. The accel...The relativistic interaction of charged particle beams with a circularly polarized electromagnetic wave propagating along a uniform guiding magnetic field in the tunneling of a dielectric medium is analyzed. The acceleration mechanism and a self-consistent nonlinear theory are presented for the interaction of relativistic charged particle beams with electromagnetic waves. Numerical results show that the beam particle can be efficiently accelerated in the interaction process.展开更多
The self-consistent Hartree-Fock equation for the He atom is solved using the pseudospectral method. The Feshbach- type autoionization resonance parameters for doubly excited 2s2, 3s2, and 4s2 IS states of He have bee...The self-consistent Hartree-Fock equation for the He atom is solved using the pseudospectral method. The Feshbach- type autoionization resonance parameters for doubly excited 2s2, 3s2, and 4s2 IS states of He have been determined by adding a complex absorbing potential to the Hamiltonian. The Riss-Meyer iterative and Pad6 extrapolation methods are applied to obtain reliable values for the autoionization resonance parameters, which are compared to previous results in the literature.展开更多
Monopoles and vortices are well known magnetically charged soliton solutions of gauge field equations. Extending the idea of Dirac on monopoles, Schwinger pioneered the concept of solitons carrying both electric and m...Monopoles and vortices are well known magnetically charged soliton solutions of gauge field equations. Extending the idea of Dirac on monopoles, Schwinger pioneered the concept of solitons carrying both electric and magnetic charges, called dyons, which are useful in modeling elementary particles. Mathematically, the existence of dyons presents interesting variational partial differential equation problems, subject to topological constraints. This article is a survey on recent progress in the study of dyons.展开更多
Routing and path selection are crucial for many communication and logistic applications. We study the interaction between nodes and packets and establish a simple model for describing the attraction of the node to the...Routing and path selection are crucial for many communication and logistic applications. We study the interaction between nodes and packets and establish a simple model for describing the attraction of the node to the packet in transmission process by using the gravitational field theory, considering the real and potential congestion of the nodes. On the basis of this model, we propose a gravitational field routing strategy that considers the attractions of all of the nodes on the travel path to the packet. In order to illustrate the efficiency of proposed routing algorithm, we introduce the order parameter to measure the throughput of the network by the critical value of phase transition from a free flow phase to a congested phase,and study the distribution of betweenness centrality and traffic jam. Simulations show that, compared with the shortest path routing strategy, the gravitational field routing strategy considerably enhances the throughput of the network and balances the traffic load, and nearly all of the nodes are used efficiently.展开更多
In order to understand the electric interfacial behavior, mean field based electric double layer (EDL) theory has been continuously developed over the past 150 years. In this article, we briefly review the developme...In order to understand the electric interfacial behavior, mean field based electric double layer (EDL) theory has been continuously developed over the past 150 years. In this article, we briefly review the development of the EDL model, from the dimensionless Gouy-Chapman model to the symmetric Bikerman-Freise model, and finally toward size-asymmetric mean field theory models. We provide the general derivations within the framework of Helmholtz free energy of the lattice- gas model, and it can be seen that the above-mentioned models are consistent in the sense that the interconversi0n among them can be achieved by reducing the basic assumptions.展开更多
The anomalous dimensions of the quantum fields are the Hausdorff dimensiongrad. The present candidate of the renormalization constant is the generalized Cantor discontinuum. The Hausdorff dimensiongrad of the Minkowsk...The anomalous dimensions of the quantum fields are the Hausdorff dimensiongrad. The present candidate of the renormalization constant is the generalized Cantor discontinuum. The Hausdorff dimensiongrad of the Minkowski space time is based upon the point set with σ-length on light cone.展开更多
Recently, Shiet al. [2008 Phys. Left. A 372 5922] have studied the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field and presented the dynamic phase diagrams by using an e...Recently, Shiet al. [2008 Phys. Left. A 372 5922] have studied the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field and presented the dynamic phase diagrams by using an effective-field theory (EFT) and a mean-field theory (MFT). The MFT results are in conflict with those of the earlier work of Tome and de Oliveira, [1990 Phys. Rev. A 41 4251]. We calculate the dynamic phase diagrams and find that our results are similar to those of the earlier work of Tome and de Oliveira; hence the dynamic phase diagrams calculated by Shiet al. are incomplete within both theories, except the low values of frequencies for the MFT calculation. We also investigate the influence of external field frequency (w) and static external field amplitude (h0) for both MFT and EFT calculations. We find that the behaviour of the system strongly depends on the values of w and h0.展开更多
In the present paper, we introduce the coupled theory (CD), Lord-Schulman (LS) theory, and Green-Lindsay (GL) theory to study the influences of a magnetic field and rotation on a two-dimensional problem of fibre...In the present paper, we introduce the coupled theory (CD), Lord-Schulman (LS) theory, and Green-Lindsay (GL) theory to study the influences of a magnetic field and rotation on a two-dimensional problem of fibre-reinforced thermoelasticity. The material is a homogeneous isotropic elastic half-space. The method applied here is to use normal mode analysis to solve a thermal shock problem. Some particular cases are also discussed in the context of the problem. Deformation of a body depends on the nature of the force applied as well as the type of boundary conditions. Numerical results for the temperature, displacement, and thermal stress components are given and illustrated graphically in the absence and the presence of the magnetic field and rotation.展开更多
This paper uses the background field method to calculate one-loop divergent corrections to the gauge field propa- gators in noncommutative U(1) gauge theory with scalar fields. It shows that for a massless scalar fi...This paper uses the background field method to calculate one-loop divergent corrections to the gauge field propa- gators in noncommutative U(1) gauge theory with scalar fields. It shows that for a massless scalar field, the gauge field propagators are renormalizable to 02-order, but for a massive scalar field they are renormalizable only to O-order.展开更多
Ionization of atoms in counter-rotating and co-rotating bicircular laser fields is studied using the S-matrix theory in both length and velocity gauges.We show that for both the bicircular fields,ionization rates are ...Ionization of atoms in counter-rotating and co-rotating bicircular laser fields is studied using the S-matrix theory in both length and velocity gauges.We show that for both the bicircular fields,ionization rates are enhanced when the two circularly polarized lights have comparable intensities.In addition,the curves of ionization rate versus the field amplitude ratio of the two colors for counter-rotating and co-rotating fields coincide with each other in the length gauge case at the total laser intensity 5×10^14 W/cm^2,which agrees with the experimental observation.Moreover,the degree of the coincidence between the ionization rate curves of the two bicircular fields decreases with the increasing field amplitude ratio and decreasing total laser intensity.With the help of the ADK theory,the above characteristics of the ionization rate curves can be well interpreted,which is related to the transition from the tunneling to multiphoton ionization mechanism.展开更多
This paper proposes an impurity solver for the dynamical mean field theory (DMFT) study of the Mott insulators, which is based on the second order perturbation of the hybridization function. After careful benchmarki...This paper proposes an impurity solver for the dynamical mean field theory (DMFT) study of the Mott insulators, which is based on the second order perturbation of the hybridization function. After careful benchmarking with quantum Monte Carlo results on the anti-ferromagnetic phase of the Hubbard model, it concludes that this impurity solver can capture the main physical features in the strong coupling regime and can be a very useful tool for the LDA (local density approximation) + DMFT studies of the Mort insulators with long range order.展开更多
The bimodal random crystal field (A) effects are investigated on the phase diagrams of spin-3/2 Ising model by using the effective-field theory with correlations based on two approximations: the general van der Wae...The bimodal random crystal field (A) effects are investigated on the phase diagrams of spin-3/2 Ising model by using the effective-field theory with correlations based on two approximations: the general van der Waerden identity and the approximated van der Waerden identity. In our approach, the crystal field is either turned on or turned off randomly for a given probability p or q = 1 -p, respectively. Then the phase diagrams are constructed on the (A,kT/J) and (p,kT/J) planes for given p and A, respectively, when the coordination number is z = 3. Furthermore, the effect of randomization of the crystal field is illustrated on the (△,kT/J) plane for p = 0.5 when z - 3,4, and 6. All these are carried out for both approximations and then the results are compared to point out the differences. In addition to the lines of second-order phase transitions, the model also exhibits first-order phase transitions and the lines of which terminate at the isolated critical points for high p values.展开更多
In this work, the ground-state properties of Pt, Hg, Pb, and Po isotopes have been systematically investigated in the deformed relativistic mean field (RMF) theory with the new parameter set FSUGold. The calculated ...In this work, the ground-state properties of Pt, Hg, Pb, and Po isotopes have been systematically investigated in the deformed relativistic mean field (RMF) theory with the new parameter set FSUGold. The calculated results show that FSUGold is as successful as NL3 in reproducing the ground-state binding energies of the nuclei in this region. The calculated two- neutron separation energies, quadrupole deformations, and root-mean-square charge radii are in agreement with the experimental data. The parameter set FSUGold can successfully describe the shell effect of the neutron magic number N = 126 and give smaller neutron skin thicknesses than NL3 for all the nuclei considered.展开更多
A Hauser-Ernst-type extended hyperbolic complex linear system given in our previous paper [Gao Y J 2004 Chin. Phys. 13 602] is slightly modified and used to develop a new inverse scattering method for the stationary a...A Hauser-Ernst-type extended hyperbolic complex linear system given in our previous paper [Gao Y J 2004 Chin. Phys. 13 602] is slightly modified and used to develop a new inverse scattering method for the stationary axisymmetric Einstein-Maxwell theory with multiple Abelian gauge fields. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the inverse scattering method be fine and effective in practical application. As an example, a concrete family of soliton solutions for the considered theory is obtained.展开更多
Gyrokinetic theory is arguably the most important tool for numerical studies of transport physics in magnetized plasmas.However,exact local energy–momentum conservation laws for the electromagnetic gyrokinetic system...Gyrokinetic theory is arguably the most important tool for numerical studies of transport physics in magnetized plasmas.However,exact local energy–momentum conservation laws for the electromagnetic gyrokinetic system have not been found despite continuous effort.Without such local conservation laws,energy and momentum can be instantaneously transported across spacetime,which is unphysical and casts doubt on the validity of numerical simulations based on the gyrokinetic theory.The standard Noether procedure for deriving conservation laws from corresponding symmetries does not apply to gyrokinetic systems because the gyrocenters and electromagnetic field reside on different manifolds.To overcome this difficulty,we develop a high-order field theory on heterogeneous manifolds for classical particle-field systems and apply it to derive exact,local conservation laws,in particular the energy–momentum conservation laws,for the electromagnetic gyrokinetic system.A weak Euler–Lagrange(EL)equation is established to replace the standard EL equation for the particles.It is discovered that an induced weak EL current enters the local conservation laws,and it is the new physics captured by the high-order field theory on heterogeneous manifolds.A recently developed gauge-symmetrization method for high-order electromagnetic field theories using the electromagnetic displacement-potential tensor is applied to render the derived energy–momentum conservation laws electromagnetic gauge-invariant.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11421101 and 21274005)the Natural Sciences and Engineering Research Council(NSERC)of Canada
文摘Bilayer membranes self-assembled from amphiphilic molecules such as lipids, surfactants, and block copolymers are ubiquitous in biological and physiochemical systems. The shape and structure of bilayer membranes depend crucially on their mechanical properties such as surface tension, bending moduli, and line tension. Understanding how the molecular properties of the amphiphiles determine the structure and mechanics of the self-assembled bilayers requires a molecularly detailed theoretical framework. The self-consistent field theory provides such a theoretical framework, which is capable of accurately predicting the mechanical parameters of self-assembled bilayer membranes. In this mini review we summarize the formulation of the self-consistent field theory, as exemplified by a model system composed of flexible amphiphilic chains dissolved in hydrophilic polymeric solvents, and its application to the study of self-assembled bilayer membranes.
基金Project supports by the National Natural Science Foundation of China(Grant Nos.21074062 and 11174163)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of Chinathe Scientific Research Fund of Zhejiang Provincial Educational Department,China(Grant No.Y200907455)
文摘The adsorption of flexible polyelectrolyte (PE) with the smeared charge distribution onto an oppositely charged sphere immersed in a PE solution is studied numerically with the continuum self-consistent field theory. The power law scaling relationships between the boundary layer thickness and the surface charge density and the charge fraction of PE chains revealed in the study are in good agreement with the existing analytical result. The curvature effect on the degree of charge compensation of the total amount of charges on the adsorbed PE chains over the surface charges is examined, and a clear understanding of it based on the dependences of the degree of charge compensation on the surface charge density and the charge fraction of PE chains is established.
文摘We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implementedthe charge self-consistent DFT+DMFT formalism by interfacing a full-potential all-electron DFT code with threehybridization expansion-based continuous-time quantum Monte Carlo impurity solvers.The benchmarks on several 3d,4fand 5f strongly correlated electron systems validated our formalism and implementation.Furthermore,within the LCANOframework,our formalism is general and the code architecture is extensible,so it can work as a bridge merging differentLCNAO DFT packages and impurity solvers to do charge self-consistent DFT+DMFT calculations.
基金Project supported by the Open Project of the Key Laboratory of Xinjiang Uygur Autonomous Region,China(Grant No.2021D04015)the Yili Kazakh Autonomous Prefecture Science and Technology Program Project,China(Grant No.YZ2022B021).
文摘Fractional molecular field theory(FMFT)is a phenomenological theory that describes phase transitions in crystals with randomly distributed components,such as the relaxor-ferroelectrics and spin glasses.In order to verify the feasibility of this theory,this paper fits it to the Monte Carlo simulations of specific heat and susceptibility versus temperature of two-dimensional(2D)random-site Ising model(2D-RSIM).The results indicate that the FMFT deviates from the 2D-RSIM significantly.The main reason for the deviation is that the 2D-RSIM is a typical system of component random distribution,where the real order parameter is spatially heterogeneous and has no symmetry of space translation,but the basic assumption of FMFT means that the parameter is spatially uniform and has symmetry of space translation.
基金supported in part by the 1000 Talents Program of Chinathe Zhengzhou Materials Genome Institute+2 种基金the National Natural Science Foundation of China(No.51001091,51571182,111174256,91233101,51602094,11274100)the Fundamental Research Program from the Ministry of Science and Technology of China(No.2014CB931704)the Program for Science&Technology Innovation Talents in the Universities of Henan Province(18HASTIT009)。
文摘Transition metal oxide cathodes such as layered Li Co O_(2),spinel Li Mn_(2)O_(4) and olivine Li Fe PO4 have been commercialized for several decades and widely used in the rechargeable Li-ion batteries(LIBs).While great theoretical efforts have been made using the density functional theory(DFT)method,leading to insightful understanding covering materials stability and functional properties,the lack of consistency in choices of functionals and/or convergence criteria makes it somewhat difficult to compare results.It is therefore highly useful to assess these established systems towards self-consistency,thus offering a reliable working basis for theoretical formulation of novel cathodes.Here in this work,we have carried out systematic DFT calculations on the basis of recently established framework covering both thermodynamic stability,functional properties and associated mechanisms.Efforts have been made in selfconsistent selection of exchange-correlation(XC)functionals in terms of dependable accuracy with affordable computational cost,which is essential for high-throughput first-principles calculations.The outcome of the current work on three established cathode systems is in very good agreement with experimental data,and the methodology is to provide a solid basis for designing novel cathode materials without using costing non-local exchange-correlation functionals for structure-energy calculations.
基金supported by National Natural Science Foundation of China(Nos.51275029,51102007 and 11275007)
文摘The relativistic interaction of charged particle beams with a circularly polarized electromagnetic wave propagating along a uniform guiding magnetic field in the tunneling of a dielectric medium is analyzed. The acceleration mechanism and a self-consistent nonlinear theory are presented for the interaction of relativistic charged particle beams with electromagnetic waves. Numerical results show that the beam particle can be efficiently accelerated in the interaction process.
文摘The self-consistent Hartree-Fock equation for the He atom is solved using the pseudospectral method. The Feshbach- type autoionization resonance parameters for doubly excited 2s2, 3s2, and 4s2 IS states of He have been determined by adding a complex absorbing potential to the Hamiltonian. The Riss-Meyer iterative and Pad6 extrapolation methods are applied to obtain reliable values for the autoionization resonance parameters, which are compared to previous results in the literature.
文摘Monopoles and vortices are well known magnetically charged soliton solutions of gauge field equations. Extending the idea of Dirac on monopoles, Schwinger pioneered the concept of solitons carrying both electric and magnetic charges, called dyons, which are useful in modeling elementary particles. Mathematically, the existence of dyons presents interesting variational partial differential equation problems, subject to topological constraints. This article is a survey on recent progress in the study of dyons.
基金Project supported by the Technology and Development Research Project of China Railway Corporation(Grant No.2012X007-D)the Key Program of Technology and Development Research Foundation of China Railway Corporation(Grant No.2012X003-A)
文摘Routing and path selection are crucial for many communication and logistic applications. We study the interaction between nodes and packets and establish a simple model for describing the attraction of the node to the packet in transmission process by using the gravitational field theory, considering the real and potential congestion of the nodes. On the basis of this model, we propose a gravitational field routing strategy that considers the attractions of all of the nodes on the travel path to the packet. In order to illustrate the efficiency of proposed routing algorithm, we introduce the order parameter to measure the throughput of the network by the critical value of phase transition from a free flow phase to a congested phase,and study the distribution of betweenness centrality and traffic jam. Simulations show that, compared with the shortest path routing strategy, the gravitational field routing strategy considerably enhances the throughput of the network and balances the traffic load, and nearly all of the nodes are used efficiently.
基金supported by the National Natural Science Foundation of China(Grant Nos.21421001,21373118,and 21203100)the Natural Science Foundation of Tianjin,China(Grant No.13JCQNJC06700)+1 种基金the MOE Innovation Team of China(Grant No.IRT13022)NFFTBS(Grant No.J1103306)
文摘In order to understand the electric interfacial behavior, mean field based electric double layer (EDL) theory has been continuously developed over the past 150 years. In this article, we briefly review the development of the EDL model, from the dimensionless Gouy-Chapman model to the symmetric Bikerman-Freise model, and finally toward size-asymmetric mean field theory models. We provide the general derivations within the framework of Helmholtz free energy of the lattice- gas model, and it can be seen that the above-mentioned models are consistent in the sense that the interconversi0n among them can be achieved by reducing the basic assumptions.
文摘The anomalous dimensions of the quantum fields are the Hausdorff dimensiongrad. The present candidate of the renormalization constant is the generalized Cantor discontinuum. The Hausdorff dimensiongrad of the Minkowski space time is based upon the point set with σ-length on light cone.
基金Project supported by the Scientific and Technological Research Council of Turkey (TBTAK) (Grant No. 107T533)the Erciyes University Research Funds (Grant Nos. FBA-06-01 and FBD-08-593)
文摘Recently, Shiet al. [2008 Phys. Left. A 372 5922] have studied the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field and presented the dynamic phase diagrams by using an effective-field theory (EFT) and a mean-field theory (MFT). The MFT results are in conflict with those of the earlier work of Tome and de Oliveira, [1990 Phys. Rev. A 41 4251]. We calculate the dynamic phase diagrams and find that our results are similar to those of the earlier work of Tome and de Oliveira; hence the dynamic phase diagrams calculated by Shiet al. are incomplete within both theories, except the low values of frequencies for the MFT calculation. We also investigate the influence of external field frequency (w) and static external field amplitude (h0) for both MFT and EFT calculations. We find that the behaviour of the system strongly depends on the values of w and h0.
文摘In the present paper, we introduce the coupled theory (CD), Lord-Schulman (LS) theory, and Green-Lindsay (GL) theory to study the influences of a magnetic field and rotation on a two-dimensional problem of fibre-reinforced thermoelasticity. The material is a homogeneous isotropic elastic half-space. The method applied here is to use normal mode analysis to solve a thermal shock problem. Some particular cases are also discussed in the context of the problem. Deformation of a body depends on the nature of the force applied as well as the type of boundary conditions. Numerical results for the temperature, displacement, and thermal stress components are given and illustrated graphically in the absence and the presence of the magnetic field and rotation.
基金Project supported by the National Natural Science Foundation of China (Grant No. 90303003)
文摘This paper uses the background field method to calculate one-loop divergent corrections to the gauge field propa- gators in noncommutative U(1) gauge theory with scalar fields. It shows that for a massless scalar field, the gauge field propagators are renormalizable to 02-order, but for a massive scalar field they are renormalizable only to O-order.
基金Project supported by the Key Laboratory Project of Computational Physics of National Defense Science and Technology of China(Grant No.6142A05180401)the National Key Program for S&T Research and Development of China(Grant Nos.2019YFA0307700 and 2016YFA0401100)the National Natural Science Foundation of China(Grant Nos.11847307,11425414,11504215,11774361,and 11874246).
文摘Ionization of atoms in counter-rotating and co-rotating bicircular laser fields is studied using the S-matrix theory in both length and velocity gauges.We show that for both the bicircular fields,ionization rates are enhanced when the two circularly polarized lights have comparable intensities.In addition,the curves of ionization rate versus the field amplitude ratio of the two colors for counter-rotating and co-rotating fields coincide with each other in the length gauge case at the total laser intensity 5×10^14 W/cm^2,which agrees with the experimental observation.Moreover,the degree of the coincidence between the ionization rate curves of the two bicircular fields decreases with the increasing field amplitude ratio and decreasing total laser intensity.With the help of the ADK theory,the above characteristics of the ionization rate curves can be well interpreted,which is related to the transition from the tunneling to multiphoton ionization mechanism.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10334090,10425418,60576058)the National Basic Research Program of China(Grant No.2007CB925000)
文摘This paper proposes an impurity solver for the dynamical mean field theory (DMFT) study of the Mott insulators, which is based on the second order perturbation of the hybridization function. After careful benchmarking with quantum Monte Carlo results on the anti-ferromagnetic phase of the Hubbard model, it concludes that this impurity solver can capture the main physical features in the strong coupling regime and can be a very useful tool for the LDA (local density approximation) + DMFT studies of the Mort insulators with long range order.
文摘The bimodal random crystal field (A) effects are investigated on the phase diagrams of spin-3/2 Ising model by using the effective-field theory with correlations based on two approximations: the general van der Waerden identity and the approximated van der Waerden identity. In our approach, the crystal field is either turned on or turned off randomly for a given probability p or q = 1 -p, respectively. Then the phase diagrams are constructed on the (A,kT/J) and (p,kT/J) planes for given p and A, respectively, when the coordination number is z = 3. Furthermore, the effect of randomization of the crystal field is illustrated on the (△,kT/J) plane for p = 0.5 when z - 3,4, and 6. All these are carried out for both approximations and then the results are compared to point out the differences. In addition to the lines of second-order phase transitions, the model also exhibits first-order phase transitions and the lines of which terminate at the isolated critical points for high p values.
基金supported by National Natural Science Foundation of China (Nos. 10535010, 10675090, 10775068, 10735010, 10975072, 11035001)973 National Major State Basic Research and Development of China (Nos. 2007CB815004, 2010CB327803)+2 种基金CAS Knowledge Innovation Project (No. KJCX2-SW-N02)Research Fund of Doctoral Point (RFDP) (No. 20070284016)Science Foundation of Educational Committee of Anhui Province(No. KJ2012A083)
文摘In this work, the ground-state properties of Pt, Hg, Pb, and Po isotopes have been systematically investigated in the deformed relativistic mean field (RMF) theory with the new parameter set FSUGold. The calculated results show that FSUGold is as successful as NL3 in reproducing the ground-state binding energies of the nuclei in this region. The calculated two- neutron separation energies, quadrupole deformations, and root-mean-square charge radii are in agreement with the experimental data. The parameter set FSUGold can successfully describe the shell effect of the neutron magic number N = 126 and give smaller neutron skin thicknesses than NL3 for all the nuclei considered.
基金Project supported by the National Natural Science Foundation of China (Grant No 10475036)
文摘A Hauser-Ernst-type extended hyperbolic complex linear system given in our previous paper [Gao Y J 2004 Chin. Phys. 13 602] is slightly modified and used to develop a new inverse scattering method for the stationary axisymmetric Einstein-Maxwell theory with multiple Abelian gauge fields. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the inverse scattering method be fine and effective in practical application. As an example, a concrete family of soliton solutions for the considered theory is obtained.
基金supported by the Chinese Scholarship Council(CSC)(No.201806340074)Shenzhen Clean Energy Research Institute and National Natural Science Foundation of China(No.12005141)+3 种基金supported by the US Department of Energy(No.DE-AC02-09CH11466)supported by the National MC Energy R&D Program(No.2018YFE0304100)National Key Research and Development Program(Nos.2016YFA0400600,2016YFA0400601 and 2016YFA0400602)the National Natural Science Foundation of China(Nos.11905220 and 11805273)。
文摘Gyrokinetic theory is arguably the most important tool for numerical studies of transport physics in magnetized plasmas.However,exact local energy–momentum conservation laws for the electromagnetic gyrokinetic system have not been found despite continuous effort.Without such local conservation laws,energy and momentum can be instantaneously transported across spacetime,which is unphysical and casts doubt on the validity of numerical simulations based on the gyrokinetic theory.The standard Noether procedure for deriving conservation laws from corresponding symmetries does not apply to gyrokinetic systems because the gyrocenters and electromagnetic field reside on different manifolds.To overcome this difficulty,we develop a high-order field theory on heterogeneous manifolds for classical particle-field systems and apply it to derive exact,local conservation laws,in particular the energy–momentum conservation laws,for the electromagnetic gyrokinetic system.A weak Euler–Lagrange(EL)equation is established to replace the standard EL equation for the particles.It is discovered that an induced weak EL current enters the local conservation laws,and it is the new physics captured by the high-order field theory on heterogeneous manifolds.A recently developed gauge-symmetrization method for high-order electromagnetic field theories using the electromagnetic displacement-potential tensor is applied to render the derived energy–momentum conservation laws electromagnetic gauge-invariant.