提出了一种面向自组织网络SON(self-organizing networks)的单播路由协议,支持应用服务质量QoS(quality of service)需求和路由器生物行为.基于OSPFv3/BGP4+,设计了自治域内和自治域间路由协议,包括报文格式与功能、链路状态描述结构、...提出了一种面向自组织网络SON(self-organizing networks)的单播路由协议,支持应用服务质量QoS(quality of service)需求和路由器生物行为.基于OSPFv3/BGP4+,设计了自治域内和自治域间路由协议,包括报文格式与功能、链路状态描述结构、邻居信息表、单播路由表和协议工作流程等.基于Quagga软件路由器实现了提出的协议,并且在网络实验平台基于Iperf工具对其进行了性能评测.结果表明,该协议是有效的,具有较好的性能.展开更多
As a core part of the electronic warfare(EW) system,de-interleaving is used to separate interleaved radar signals. As interleaved radar pulses become more complex and denser, intelligent classification of radar signal...As a core part of the electronic warfare(EW) system,de-interleaving is used to separate interleaved radar signals. As interleaved radar pulses become more complex and denser, intelligent classification of radar signals has become very important. The self-organizing feature map(SOFM) is an excellent artificial neural network, which has huge advantages in intelligent classification of complex data. However, the de-interleaving process based on SOFM is faced with the problems that the initialization of the map size relies on prior information and the network topology cannot be adaptively adjusted. In this paper, an SOFM with self-adaptive network topology(SANT-SOFM) algorithm is proposed to solve the above problems. The SANT-SOFM algorithm first proposes an adaptive proliferation algorithm to adjust the map size, so that the initialization of the map size is no longer dependent on prior information but is gradually adjusted with the input data. Then,structural optimization algorithms are proposed to gradually optimize the topology of the SOFM network in the iterative process,constructing an optimal SANT. Finally, the optimized SOFM network is used for de-interleaving radar signals. Simulation results show that SANT-SOFM could get excellent performance in complex EW environments and the probability of getting the optimal map size is over 95% in the absence of priori information.展开更多
A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF ...A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF neural network with the initial parameters obtained by k-means learning method. During the iteration procedure of the algorithm, the centers of the neural network were optimized by using the gradient method with these optimized width values. The computational efficiency was maintained by using the multi-threading technique. SODM-RBFNN consists of two RBF neural network models: one is a running model used to predict the product yields of fluid catalytic cracking unit(FCCU) and optimize its operating parameters; the other is a learning model applied to construct or correct a RBF neural network. The running model can be updated by the learning model according to an accuracy criterion. The simulation results of a five-lump kinetic model exhibit its accuracy and generalization capabilities, and practical application in FCCU illustrates its effectiveness.展开更多
The main aim of this research is to get a better knowledge and understanding of the micro-scale oscillatory networks behavior in the solid propellants reactionary zones. Fundamental understanding of the micro-and nano...The main aim of this research is to get a better knowledge and understanding of the micro-scale oscillatory networks behavior in the solid propellants reactionary zones. Fundamental understanding of the micro-and nano-scale combustion mechanisms is essential to the development and further improvement of the next-generation technologies for extreme control of the solid propellant thrust. Both experiments and theory confirm that the micro-and nano-scale oscillatory networks excitation in the solid propellants reactionary zones is a rather universal phenomenon. In accordance with our concept,the micro-and nano-scale structures form both the fractal and self-organized wave patterns in the solid propellants reactionary zones. Control by the shape, the sizes and spacial orientation of the wave patterns allows manipulate by the energy exchange and release in the reactionary zones. A novel strategy for enhanced extreme thrust control in solid propulsion systems are based on manipulation by selforganization of the micro-and nano-scale oscillatory networks and self-organized patterns formation in the reactionary zones with use of the system of acoustic waves and electro-magnetic fields, generated by special kind of ring-shaped electric discharges along with resonance laser radiation. Application of special kind of the ring-shaped electric discharges demands the minimum expenses of energy and opens prospects for almost inertia-free control by combustion processes. Nano-sized additives will enhance self-organizing and self-synchronization of the micro-and nano-scale oscillatory networks on the nanometer scale. Suggested novel strategy opens the door for completely new ways for enhanced extreme thrust control of the solid propulsion systems.展开更多
文摘提出了一种面向自组织网络SON(self-organizing networks)的单播路由协议,支持应用服务质量QoS(quality of service)需求和路由器生物行为.基于OSPFv3/BGP4+,设计了自治域内和自治域间路由协议,包括报文格式与功能、链路状态描述结构、邻居信息表、单播路由表和协议工作流程等.基于Quagga软件路由器实现了提出的协议,并且在网络实验平台基于Iperf工具对其进行了性能评测.结果表明,该协议是有效的,具有较好的性能.
基金supported by the National Natural Science Foundation of China(61571043)the 111 Project of China(B14010)。
文摘As a core part of the electronic warfare(EW) system,de-interleaving is used to separate interleaved radar signals. As interleaved radar pulses become more complex and denser, intelligent classification of radar signals has become very important. The self-organizing feature map(SOFM) is an excellent artificial neural network, which has huge advantages in intelligent classification of complex data. However, the de-interleaving process based on SOFM is faced with the problems that the initialization of the map size relies on prior information and the network topology cannot be adaptively adjusted. In this paper, an SOFM with self-adaptive network topology(SANT-SOFM) algorithm is proposed to solve the above problems. The SANT-SOFM algorithm first proposes an adaptive proliferation algorithm to adjust the map size, so that the initialization of the map size is no longer dependent on prior information but is gradually adjusted with the input data. Then,structural optimization algorithms are proposed to gradually optimize the topology of the SOFM network in the iterative process,constructing an optimal SANT. Finally, the optimized SOFM network is used for de-interleaving radar signals. Simulation results show that SANT-SOFM could get excellent performance in complex EW environments and the probability of getting the optimal map size is over 95% in the absence of priori information.
基金Projects(60974031,60704011,61174128)supported by the National Natural Science Foundation of China
文摘A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF neural network with the initial parameters obtained by k-means learning method. During the iteration procedure of the algorithm, the centers of the neural network were optimized by using the gradient method with these optimized width values. The computational efficiency was maintained by using the multi-threading technique. SODM-RBFNN consists of two RBF neural network models: one is a running model used to predict the product yields of fluid catalytic cracking unit(FCCU) and optimize its operating parameters; the other is a learning model applied to construct or correct a RBF neural network. The running model can be updated by the learning model according to an accuracy criterion. The simulation results of a five-lump kinetic model exhibit its accuracy and generalization capabilities, and practical application in FCCU illustrates its effectiveness.
基金supported by the Western-Caucasus Research Center
文摘The main aim of this research is to get a better knowledge and understanding of the micro-scale oscillatory networks behavior in the solid propellants reactionary zones. Fundamental understanding of the micro-and nano-scale combustion mechanisms is essential to the development and further improvement of the next-generation technologies for extreme control of the solid propellant thrust. Both experiments and theory confirm that the micro-and nano-scale oscillatory networks excitation in the solid propellants reactionary zones is a rather universal phenomenon. In accordance with our concept,the micro-and nano-scale structures form both the fractal and self-organized wave patterns in the solid propellants reactionary zones. Control by the shape, the sizes and spacial orientation of the wave patterns allows manipulate by the energy exchange and release in the reactionary zones. A novel strategy for enhanced extreme thrust control in solid propulsion systems are based on manipulation by selforganization of the micro-and nano-scale oscillatory networks and self-organized patterns formation in the reactionary zones with use of the system of acoustic waves and electro-magnetic fields, generated by special kind of ring-shaped electric discharges along with resonance laser radiation. Application of special kind of the ring-shaped electric discharges demands the minimum expenses of energy and opens prospects for almost inertia-free control by combustion processes. Nano-sized additives will enhance self-organizing and self-synchronization of the micro-and nano-scale oscillatory networks on the nanometer scale. Suggested novel strategy opens the door for completely new ways for enhanced extreme thrust control of the solid propulsion systems.