In addition to the negative consequences of climate change,sucking pest complexes severely limited cotton yields in the recent past.Although the damage caused by bollworms was much reduced by utilizing Bt cotton,the e...In addition to the negative consequences of climate change,sucking pest complexes severely limited cotton yields in the recent past.Although the damage caused by bollworms was much reduced by utilizing Bt cotton,the emergence of sucking pests(such as aphids,thrips,and whiteflies)poses a serious threat to cotton production,as they reduce lint yield by 40%–60%finally.Additionally,these pests also caused yield losses by spreading viral diseases.Promoting innovative and thorough control methods is necessary to counter the threat posed by these sucking pests.Such initiatives necessitate a multifaceted strategy that combines next-generation breeding technology and pest management techniques to produce novel cotton cultivars that are resistant to sucking pests.The discovery of novel genes and regulatory factors linked to cotton’s resistance to sucking pests will be possible by the combination of next-generation breeding technologies and omics approaches and employing those tools on special resistant donors.Continuous research aimed at understanding the genetic basis of insect resistance and improving integrated pest management(IPM)techniques is crucial to the sustainability and resilience of cotton cropping systems.To this end,a sustainable and viable strategy to protect cotton fields from sucking pests is outlined.展开更多
Cotton is said to be the backbone of Pakistan's economy.Cotton production is facing many challenges such as climate change,pests and diseases,and competition from food crops(Ali et al.,2019).One of the major issue...Cotton is said to be the backbone of Pakistan's economy.Cotton production is facing many challenges such as climate change,pests and diseases,and competition from food crops(Ali et al.,2019).One of the major issues faced by cotton production is seed purity,as cotton is often cross-pollinated,therefore breeders are hard to maintain seed purity.For example,non-Bt cotton varieties are often contaminated with Bt seeds which is an important limiting factor.Another important consideration in cotton breeding is rapid generation advancement.展开更多
The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd‑based catalysts that were co‑modified with organic and inorganic ligands.It was demonstrated that the catalysts c...The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd‑based catalysts that were co‑modified with organic and inorganic ligands.It was demonstrated that the catalysts contained Pd species in mixed valence states,with high valence Pd at the metal‑support interface and zero valence Pd at the metal surface.While the strong coordination of triphenylphosphine(PPh3)to Pd0 on the Pd surface prevents the adsorption of halogenated nitroaromatics and thus dehalogenation,the coordination of sodium metavanadate(NaVO3)to high‑valence Pd sites at the interface helps to activate H2 in a heterolytic pathway for the selective hydrogenation of nitro‑groups.The excellent catalytic performance of the interfacial active sites enables the selective hydrogenation of a wide range of halogenated nitroaromatics.展开更多
This paper investigates the selective maintenance o systems that perform multi-mission in succession. Selective maintenance is performed on systems with limited break time to improve the success of the next mission. I...This paper investigates the selective maintenance o systems that perform multi-mission in succession. Selective maintenance is performed on systems with limited break time to improve the success of the next mission. In general, the duration of the mission is stochastic. However, existing studies rarely take into account system availability and the repairpersons with different skill levels. To solve this problem, a new multi-mission selective maintenance and repairpersons assignment model with stochastic duration of the mission are developed. To maximize the minimum phase-mission reliability while meeting the minimum system availability, the model is transformed into an optimization problem subject to limited maintenance resources. The optimization is then realized using an analytical method based on a self-programming function and a Monte Carlo simulation method, respectively. Finally, the validity of the model and solution method approaches are verified by numerical arithmetic examples. Comparative and sensitivity analyses are made to provide proven recommendations for decision-makers.展开更多
Selective laser melting(SLM)is a cost-effective 3 D metal additive manufacturing(AM)process.However,AM 316 L stainless steel(SS)has different surface and microstructure properties as compared to conventional ones.Bori...Selective laser melting(SLM)is a cost-effective 3 D metal additive manufacturing(AM)process.However,AM 316 L stainless steel(SS)has different surface and microstructure properties as compared to conventional ones.Boriding process is one of the ways to modify and increase the surface properties.The aim of this study is to predict and understand the growth kinetic of iron boride layers on AM 316 L SS.In this study,the growth kinetic mechanism was evaluated for AM 316 L SS.Pack boriding was applied at 850,900 and 950℃,each for 2,4 and 6 h.The thickness of the boride layers ranged from(1.8±0.3)μm to(27.7±2.2)μm.A diffusion model based on error function solutions in Fick’s second law was proposed to quantitatively predict and elucidate the growth rate of FeB and Fe_(2)B phase layers.The activation energy(Q)values for boron diffusion in FeB layer,Fe_(2)B layer,and dual FeB+Fe_(2)B layer were found to be 256.56,161.61 and 209.014 kJ/mol,respectively,which were higher than the conventional 316 L SS.The findings might provide and open new directions and approaches for applications of additively manufactured steels.展开更多
In order to obtain high-density dual-scale ceramic particles(8.5 wt.%SiC+1.5 wt.%TiC)reinforced Al-Mg Sc-Zr composites with uniform microstructure,50 nm TiC and 7μm SiC particles were pre-dispersed into 15−53μm alum...In order to obtain high-density dual-scale ceramic particles(8.5 wt.%SiC+1.5 wt.%TiC)reinforced Al-Mg Sc-Zr composites with uniform microstructure,50 nm TiC and 7μm SiC particles were pre-dispersed into 15−53μm aluminum alloy powders by low-speed ball milling and mechanical mixing technology,respectively.Then,the effects of laser energy density,power and scanning rate on the density of the composites were investigated based on selective laser melting(SLM)technology.The effect of micron-sized SiC and nano-sized TiC particles on solidification structure,mechanical properties and fracture behaviors of the composites was revealed and analyzed in detail.Interfacial reaction and phase variations in the composites with varying reinforced particles were emphatically considered.Results showed that SiC-TiC particles could significantly improve forming quality and density of the SLMed composites,and the optimal relative density was up to 100%.In the process of laser melting,a strong chemical reaction occurs between SiC and aluminum matrix,and micron-scale acicular Al_(4)SiC_(4) bands were formed in situ.There was no interfacial reaction between TiC particles and aluminum matrix.TiC/Al semi-coherent interface had good bonding strength.Pinning effect of TiC particles in grain boundaries could prevent the equiaxial crystals from growing and transforming into columnar crystals,resulting in grain refinement.The optimal ultimate tensile strength(UTS),yield strength(YS),elongation(EL)and elastic modulus of the SiC-TiC/Al-Mg-Sc-Zr composite were~394 MPa,~262 MPa,~8.2%and~86 GPa,respectively.The fracture behavior of the composites included ductile fracture of Al matrix and brittle cleavage fracture of Al_(4)SiC_(4) phases.A large number of cross-distributed acicular Al_(4)SiC_(4) bands were the main factors leading to premature failure and fracture of SiC-TiC/Al-Mg-Sc-Zr composites.展开更多
In view of the difference in coordination capacity of the glycine ion(Gly−),a selective leaching process for treating with spent lithium-ion batteries(LIBs)in the alkaline glycinate system was proposed.The effects of ...In view of the difference in coordination capacity of the glycine ion(Gly−),a selective leaching process for treating with spent lithium-ion batteries(LIBs)in the alkaline glycinate system was proposed.The effects of retention time,leaching temperature,concentration of glycine ligand,liquid-solid ratio(L/S),pH,stirring speed,and H_(2)O_(2) dosage on the leaching efficiency of valuable metals and the dissolution of impurities were investigated.When the spent LIBs were leached in 3 mol/L glycine aqueous solution with pH of 8,L/S of 5 mL:1 g and H_(2)O_(2) dosage of 5 vol.%at 90℃and stirring speed of 400 r/min for 3 h,lithium,cobalt,nickel,and manganese recoveries were 96.31%,83.18%,91.56%,and 31.16%,respectively,but Ca,Al,Fe,and Cu were almost insoluble.Meanwhile,the kinetic study showed that the activation energies for the leaching of Li,Co,Ni,and Mn were all in the range of 45−61 kJ/mol.The results indicate that the leaching process is all controlled by chemical reactions.展开更多
The selective reduction of carbon dioxide(CO_(2))into high-value-added chemicals is one of the most effective means to solve the current energy and environmental problems,which could realize the utilization of CO_(2) ...The selective reduction of carbon dioxide(CO_(2))into high-value-added chemicals is one of the most effective means to solve the current energy and environmental problems,which could realize the utilization of CO_(2) and promote the balance of the carbon cycle.Formate is one of the most economical and practical products of all the electrochemical CO_(2) reduction products.Among the many metal-based electrocatalysts that can convert CO_(2) into formate,Sn-based catalysts have received a lot of attention because of their low-cost,non-toxic characteristics and high selectivity for formate.In this article,the most recent development of Sn-based electrocatalysts is comprehensively summarized by giving examples,which are mainly divided into monometallic Sn,alloyed Sn,Sn-based compounds and Sn composite catalysts.Finally,the current performance enhancement strategies and future directions of the field are summarized.展开更多
Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technologic...Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technological Research Council of Turkey(TÜB˙ITAK)for receiving financial support for this work through the 2221 Fellowship Program for Visiting Scientists and Scientists on Sabbatical Leave(Grant ID:E 21514107-115.02-228864).Sasan YAZDANI also expresses his gratitude to Sahand University of Technology for granting him sabbatical leave to facilitate the completion of this research.展开更多
In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection cr...In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection criteria contain correlation and sensitivity between the geometric parameter and the electromagnetic(EM)response.Maximal information coefficient(MIC),an exploratory data mining tool,is introduced to evaluate both linear and nonlinear correlations.The EM response range is utilized to evaluate the sensitivity.The wide response range corresponding to varying values of a parameter implies the parameter is highly sensitive and the narrow response range suggests the parameter is insensitive.Only the parameter which is highly correlative and sensitive is selected as the input of ANN,and the sampling space of the model is highly reduced.The modeling of a wideband and circularly polarized antenna is studied as an example to verify the effectiveness of the proposed method.The number of input parameters decreases from8 to 4.The testing errors of|S_(11)|and axis ratio are reduced by8.74%and 8.95%,respectively,compared with the ANN with no feature selection.展开更多
Cotton is the prime natural fiber with economic significance globally.Cotton farming and breeding have a long his-tory in Pakistan.The development of high yielding upland cotton(Gossypium hirsutum)varieties gradually ...Cotton is the prime natural fiber with economic significance globally.Cotton farming and breeding have a long his-tory in Pakistan.The development of high yielding upland cotton(Gossypium hirsutum)varieties gradually replaced the cultivation of diploid Gossypium species.Climate change along with emergence of new epidemic diseases caused yield loss in recent years.The biotic stress considerably reduced the performance and yield potential of cotton.Suit-able breeding strategies are essential to generate useful genetic variations and to identify desired traits.Conventional breeding has remarkably increased cotton yield and fiber quality,which has cultivated the NIAB-78,S-12,MNH‐786,and FH‐Lalazar like cultivars.However,this phenotypic selection based breeding method has low efficiency to pro-duce stress resilient cotton.The efficiency of traditional breeding has significantly improved by the marker assisted selection technology.Breakthroughs in molecular genetics,bioinformatics analysis,genetic engineering,and genome sequencing have opened new technique routes for cotton breeding.In addition,genetic improvement through quantitative trait loci,transcriptome,and CRISPR/Cas9 mediated genomic editing can provide suitable platform to improve the resistance to stresses induced by bollworms,cotton leaf curl virus,heat,drought,and salt.The approval of transgenic lines harboring triple gene Cry1Ac+Cry2A+GTG are critical for cotton crop.This review has critically discussed the progress and limitations of cotton breeding in Pakistan,and reviewed the utilization of novel genetic variations and selection tools for sustainable cotton production.展开更多
A geometrical parameters optimization and reducers selection method was proposed for robotic manipulators design. The Lagrangian approach was employed in deriving the dynamic model of a two-DOF manipulator. The flexib...A geometrical parameters optimization and reducers selection method was proposed for robotic manipulators design. The Lagrangian approach was employed in deriving the dynamic model of a two-DOF manipulator. The flexibility of links and joints was taken into account in the mechanical structure dimensions optimization and reducers selection, in which Timoshenko model was used to discretize the hollow links. Two criteria, i.e. maximization of fundamental frequency and minimization of self-mass/load ratio, were utilized to optimize the manipulators. The NSGA-II (fast elitist nondominated sorting genetic algorithms) was employed to solve the multi-objective optimization problem. How the joints flexibility affects the manipulators design was analyzed and shown in the numerical analysis example. The results indicate that simultaneous consideration of the joints and the links flexibility is very necessary for manipulators optimal design. Finally, several optimal combinations were provided. The effectiveness of the optimization method was proved by comparing with ADAMS simulation results. The self-mass/load ratio error of the two methods is within 10%. The maximum error of the natural frequency by the two methods is 23.74%. The method proposed in this work provides a fast and effective pathway for manipulator design and reducers selection.展开更多
The HB-red flower trait came from the filial generation of the interspecific cross of upland cotton(Gossypium hirsutum L.) and G.bickii.It exhibits pink petals and filaments,with a large
Mutagenic breeding has been carried out in China since 1986 by on boarding the crop seeds in recoverable satellite and balloon. Good results have been obtained. Some new crop lines with high-yield, good-quantity, dise...Mutagenic breeding has been carried out in China since 1986 by on boarding the crop seeds in recoverable satellite and balloon. Good results have been obtained. Some new crop lines with high-yield, good-quantity, disease resistant characters were obtained respectively.展开更多
A wheat breeding model for high yield in the middle and south of Hebei Province was developed. Wheat variety Ji 84-5418 has been bred on this model. The analysis results of high-yield and stability indicated that Ji 8...A wheat breeding model for high yield in the middle and south of Hebei Province was developed. Wheat variety Ji 84-5418 has been bred on this model. The analysis results of high-yield and stability indicated that Ji 84-5418 was not only an aggregate of varied excellent characters,but a recombined biotype which could early differentiate spike and develop coordi-nately,and had better self-regulation ability and potential high productivity. Its yield is stable at 6000-8250 kg/ha.展开更多
Several computer packages have been developed to accomplish improved programs for animal breeding and genetic selection. This paper described most of the currant software and provided suggestions for improved software...Several computer packages have been developed to accomplish improved programs for animal breeding and genetic selection. This paper described most of the currant software and provided suggestions for improved software. Khon Kaen University, Thailand, will provide free of charge the new software developed at Khon Kaen University by the author of this paper. The contact for requesting the software is listed: monchai@kku.ac.th.展开更多
Most of model cotton varieties used in tissue culture have glands on both the reproductive and vegetative parts of the plant.These glands contain compounds that are toxic to human and non-ruminant animals.The presence...Most of model cotton varieties used in tissue culture have glands on both the reproductive and vegetative parts of the plant.These glands contain compounds that are toxic to human and non-ruminant animals.The presence of these compounds limits their usage as food and feed.To obtain a glandless cotton variety with high-frequency somatic embryo production ability,27 glandless varieties展开更多
The F 1 and F 4 plants of 'synthetic hexaploid wheat/common wheat'crosses and part of their parents were inoculated with Fusarium graminearum to evaluate FHB resistance.The results showed tht the scab resist...The F 1 and F 4 plants of 'synthetic hexaploid wheat/common wheat'crosses and part of their parents were inoculated with Fusarium graminearum to evaluate FHB resistance.The results showed tht the scab resistance in the F 1 varied with the synthetic wheat accessions used as crossing parents.In the F 4,some resistant head lines were generated from the crosses,although their parents had different scab resistance levels.It indicated that synthetic hexaploid wheat are useful in wheat breeding for scab resistance.展开更多
The narrow genetic base in potato (Solanum tuberosum L.) limits the progress in cultivar development.The rich diploid germplasm in the origin center of potato provide a unique resource for improvement of tetraploid po...The narrow genetic base in potato (Solanum tuberosum L.) limits the progress in cultivar development.The rich diploid germplasm in the origin center of potato provide a unique resource for improvement of tetraploid potatoes.Seven newly developed diploid hybrids with 2n pollen production,all of which have S. phureja background,were developed and evaluated for their value in potato breeding.They were crossed as male parnets to six tetraploid Solanum tuberosum cultivars,and seeds in large quantity from eleven crosses were obtained.Main agronomic traits,such as tuber yield,tuber number,mean tuber weight,tuber shape,eye depth,skin smoothness,flesh color,and specific gravity,were measured for 4x 2x tetraploid progenies in seedling generation,and their parents as well.All of the diploid hybrids had some merit for specific traits and the DH39 was more promising;high specific gravity trait in some diploid hybrids was successfully introgressed into tetroploid progenies via 4x 2x crosses.These diploid hybrids have potential value in potato breeding.展开更多
基金M/s.RASI Seeds Pvt.Ltd.,Attur,Tamil Nadu,India for their generous financial assistance in setting up a MAS study in cotton for genetic improvement of sucking pest resistance.
文摘In addition to the negative consequences of climate change,sucking pest complexes severely limited cotton yields in the recent past.Although the damage caused by bollworms was much reduced by utilizing Bt cotton,the emergence of sucking pests(such as aphids,thrips,and whiteflies)poses a serious threat to cotton production,as they reduce lint yield by 40%–60%finally.Additionally,these pests also caused yield losses by spreading viral diseases.Promoting innovative and thorough control methods is necessary to counter the threat posed by these sucking pests.Such initiatives necessitate a multifaceted strategy that combines next-generation breeding technology and pest management techniques to produce novel cotton cultivars that are resistant to sucking pests.The discovery of novel genes and regulatory factors linked to cotton’s resistance to sucking pests will be possible by the combination of next-generation breeding technologies and omics approaches and employing those tools on special resistant donors.Continuous research aimed at understanding the genetic basis of insect resistance and improving integrated pest management(IPM)techniques is crucial to the sustainability and resilience of cotton cropping systems.To this end,a sustainable and viable strategy to protect cotton fields from sucking pests is outlined.
基金the Research Project at International Center for Chemical and Biological Sciences,University of Karachi,Karachi,Pakistan。
文摘Cotton is said to be the backbone of Pakistan's economy.Cotton production is facing many challenges such as climate change,pests and diseases,and competition from food crops(Ali et al.,2019).One of the major issues faced by cotton production is seed purity,as cotton is often cross-pollinated,therefore breeders are hard to maintain seed purity.For example,non-Bt cotton varieties are often contaminated with Bt seeds which is an important limiting factor.Another important consideration in cotton breeding is rapid generation advancement.
文摘The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd‑based catalysts that were co‑modified with organic and inorganic ligands.It was demonstrated that the catalysts contained Pd species in mixed valence states,with high valence Pd at the metal‑support interface and zero valence Pd at the metal surface.While the strong coordination of triphenylphosphine(PPh3)to Pd0 on the Pd surface prevents the adsorption of halogenated nitroaromatics and thus dehalogenation,the coordination of sodium metavanadate(NaVO3)to high‑valence Pd sites at the interface helps to activate H2 in a heterolytic pathway for the selective hydrogenation of nitro‑groups.The excellent catalytic performance of the interfacial active sites enables the selective hydrogenation of a wide range of halogenated nitroaromatics.
文摘This paper investigates the selective maintenance o systems that perform multi-mission in succession. Selective maintenance is performed on systems with limited break time to improve the success of the next mission. In general, the duration of the mission is stochastic. However, existing studies rarely take into account system availability and the repairpersons with different skill levels. To solve this problem, a new multi-mission selective maintenance and repairpersons assignment model with stochastic duration of the mission are developed. To maximize the minimum phase-mission reliability while meeting the minimum system availability, the model is transformed into an optimization problem subject to limited maintenance resources. The optimization is then realized using an analytical method based on a self-programming function and a Monte Carlo simulation method, respectively. Finally, the validity of the model and solution method approaches are verified by numerical arithmetic examples. Comparative and sensitivity analyses are made to provide proven recommendations for decision-makers.
文摘Selective laser melting(SLM)is a cost-effective 3 D metal additive manufacturing(AM)process.However,AM 316 L stainless steel(SS)has different surface and microstructure properties as compared to conventional ones.Boriding process is one of the ways to modify and increase the surface properties.The aim of this study is to predict and understand the growth kinetic of iron boride layers on AM 316 L SS.In this study,the growth kinetic mechanism was evaluated for AM 316 L SS.Pack boriding was applied at 850,900 and 950℃,each for 2,4 and 6 h.The thickness of the boride layers ranged from(1.8±0.3)μm to(27.7±2.2)μm.A diffusion model based on error function solutions in Fick’s second law was proposed to quantitatively predict and elucidate the growth rate of FeB and Fe_(2)B phase layers.The activation energy(Q)values for boron diffusion in FeB layer,Fe_(2)B layer,and dual FeB+Fe_(2)B layer were found to be 256.56,161.61 and 209.014 kJ/mol,respectively,which were higher than the conventional 316 L SS.The findings might provide and open new directions and approaches for applications of additively manufactured steels.
基金Project(2022J318)supported by the Natural Science Foundation of Ningbo,ChinaProject(2021A1515110525)supported by the Guangdong Basic and Applied Basic Research Foundation,ChinaProject(2022QN05023)supported by the Inner Mongolia Natural Science Foundation Youth Project,China。
文摘In order to obtain high-density dual-scale ceramic particles(8.5 wt.%SiC+1.5 wt.%TiC)reinforced Al-Mg Sc-Zr composites with uniform microstructure,50 nm TiC and 7μm SiC particles were pre-dispersed into 15−53μm aluminum alloy powders by low-speed ball milling and mechanical mixing technology,respectively.Then,the effects of laser energy density,power and scanning rate on the density of the composites were investigated based on selective laser melting(SLM)technology.The effect of micron-sized SiC and nano-sized TiC particles on solidification structure,mechanical properties and fracture behaviors of the composites was revealed and analyzed in detail.Interfacial reaction and phase variations in the composites with varying reinforced particles were emphatically considered.Results showed that SiC-TiC particles could significantly improve forming quality and density of the SLMed composites,and the optimal relative density was up to 100%.In the process of laser melting,a strong chemical reaction occurs between SiC and aluminum matrix,and micron-scale acicular Al_(4)SiC_(4) bands were formed in situ.There was no interfacial reaction between TiC particles and aluminum matrix.TiC/Al semi-coherent interface had good bonding strength.Pinning effect of TiC particles in grain boundaries could prevent the equiaxial crystals from growing and transforming into columnar crystals,resulting in grain refinement.The optimal ultimate tensile strength(UTS),yield strength(YS),elongation(EL)and elastic modulus of the SiC-TiC/Al-Mg-Sc-Zr composite were~394 MPa,~262 MPa,~8.2%and~86 GPa,respectively.The fracture behavior of the composites included ductile fracture of Al matrix and brittle cleavage fracture of Al_(4)SiC_(4) phases.A large number of cross-distributed acicular Al_(4)SiC_(4) bands were the main factors leading to premature failure and fracture of SiC-TiC/Al-Mg-Sc-Zr composites.
基金Projects(51974137,52274299)supported by the National Natural Science Foundation of ChinaProject(2023M733190)supported by the China Postdoctoral Science Foundation。
文摘In view of the difference in coordination capacity of the glycine ion(Gly−),a selective leaching process for treating with spent lithium-ion batteries(LIBs)in the alkaline glycinate system was proposed.The effects of retention time,leaching temperature,concentration of glycine ligand,liquid-solid ratio(L/S),pH,stirring speed,and H_(2)O_(2) dosage on the leaching efficiency of valuable metals and the dissolution of impurities were investigated.When the spent LIBs were leached in 3 mol/L glycine aqueous solution with pH of 8,L/S of 5 mL:1 g and H_(2)O_(2) dosage of 5 vol.%at 90℃and stirring speed of 400 r/min for 3 h,lithium,cobalt,nickel,and manganese recoveries were 96.31%,83.18%,91.56%,and 31.16%,respectively,but Ca,Al,Fe,and Cu were almost insoluble.Meanwhile,the kinetic study showed that the activation energies for the leaching of Li,Co,Ni,and Mn were all in the range of 45−61 kJ/mol.The results indicate that the leaching process is all controlled by chemical reactions.
基金Project(52204378)supported by the National Natural Science Foundation of China。
文摘The selective reduction of carbon dioxide(CO_(2))into high-value-added chemicals is one of the most effective means to solve the current energy and environmental problems,which could realize the utilization of CO_(2) and promote the balance of the carbon cycle.Formate is one of the most economical and practical products of all the electrochemical CO_(2) reduction products.Among the many metal-based electrocatalysts that can convert CO_(2) into formate,Sn-based catalysts have received a lot of attention because of their low-cost,non-toxic characteristics and high selectivity for formate.In this article,the most recent development of Sn-based electrocatalysts is comprehensively summarized by giving examples,which are mainly divided into monometallic Sn,alloyed Sn,Sn-based compounds and Sn composite catalysts.Finally,the current performance enhancement strategies and future directions of the field are summarized.
文摘Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technological Research Council of Turkey(TÜB˙ITAK)for receiving financial support for this work through the 2221 Fellowship Program for Visiting Scientists and Scientists on Sabbatical Leave(Grant ID:E 21514107-115.02-228864).Sasan YAZDANI also expresses his gratitude to Sahand University of Technology for granting him sabbatical leave to facilitate the completion of this research.
基金National Natural Science Foundation of China(62161048)Sichuan Science and Technology Program(2022NSFSC0547,2022ZYD0109)。
文摘In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection criteria contain correlation and sensitivity between the geometric parameter and the electromagnetic(EM)response.Maximal information coefficient(MIC),an exploratory data mining tool,is introduced to evaluate both linear and nonlinear correlations.The EM response range is utilized to evaluate the sensitivity.The wide response range corresponding to varying values of a parameter implies the parameter is highly sensitive and the narrow response range suggests the parameter is insensitive.Only the parameter which is highly correlative and sensitive is selected as the input of ANN,and the sampling space of the model is highly reduced.The modeling of a wideband and circularly polarized antenna is studied as an example to verify the effectiveness of the proposed method.The number of input parameters decreases from8 to 4.The testing errors of|S_(11)|and axis ratio are reduced by8.74%and 8.95%,respectively,compared with the ANN with no feature selection.
基金This work was sponsored by funds from the Zhongyuan Academician Founda-tion(212101510001)the General Program of the National Natural Science Foundation of China(31871679).
文摘Cotton is the prime natural fiber with economic significance globally.Cotton farming and breeding have a long his-tory in Pakistan.The development of high yielding upland cotton(Gossypium hirsutum)varieties gradually replaced the cultivation of diploid Gossypium species.Climate change along with emergence of new epidemic diseases caused yield loss in recent years.The biotic stress considerably reduced the performance and yield potential of cotton.Suit-able breeding strategies are essential to generate useful genetic variations and to identify desired traits.Conventional breeding has remarkably increased cotton yield and fiber quality,which has cultivated the NIAB-78,S-12,MNH‐786,and FH‐Lalazar like cultivars.However,this phenotypic selection based breeding method has low efficiency to pro-duce stress resilient cotton.The efficiency of traditional breeding has significantly improved by the marker assisted selection technology.Breakthroughs in molecular genetics,bioinformatics analysis,genetic engineering,and genome sequencing have opened new technique routes for cotton breeding.In addition,genetic improvement through quantitative trait loci,transcriptome,and CRISPR/Cas9 mediated genomic editing can provide suitable platform to improve the resistance to stresses induced by bollworms,cotton leaf curl virus,heat,drought,and salt.The approval of transgenic lines harboring triple gene Cry1Ac+Cry2A+GTG are critical for cotton crop.This review has critically discussed the progress and limitations of cotton breeding in Pakistan,and reviewed the utilization of novel genetic variations and selection tools for sustainable cotton production.
基金Project(2009AA04Z216) supported by the National High-Tech Research and Development Program (863 Program) of ChinaProject(2009ZX04013-011) supported by the National Science and Technology Major Project of ChinaProject supported by the HIT Oversea Talents Introduction Program,China
文摘A geometrical parameters optimization and reducers selection method was proposed for robotic manipulators design. The Lagrangian approach was employed in deriving the dynamic model of a two-DOF manipulator. The flexibility of links and joints was taken into account in the mechanical structure dimensions optimization and reducers selection, in which Timoshenko model was used to discretize the hollow links. Two criteria, i.e. maximization of fundamental frequency and minimization of self-mass/load ratio, were utilized to optimize the manipulators. The NSGA-II (fast elitist nondominated sorting genetic algorithms) was employed to solve the multi-objective optimization problem. How the joints flexibility affects the manipulators design was analyzed and shown in the numerical analysis example. The results indicate that simultaneous consideration of the joints and the links flexibility is very necessary for manipulators optimal design. Finally, several optimal combinations were provided. The effectiveness of the optimization method was proved by comparing with ADAMS simulation results. The self-mass/load ratio error of the two methods is within 10%. The maximum error of the natural frequency by the two methods is 23.74%. The method proposed in this work provides a fast and effective pathway for manipulator design and reducers selection.
文摘The HB-red flower trait came from the filial generation of the interspecific cross of upland cotton(Gossypium hirsutum L.) and G.bickii.It exhibits pink petals and filaments,with a large
文摘Mutagenic breeding has been carried out in China since 1986 by on boarding the crop seeds in recoverable satellite and balloon. Good results have been obtained. Some new crop lines with high-yield, good-quantity, disease resistant characters were obtained respectively.
文摘A wheat breeding model for high yield in the middle and south of Hebei Province was developed. Wheat variety Ji 84-5418 has been bred on this model. The analysis results of high-yield and stability indicated that Ji 84-5418 was not only an aggregate of varied excellent characters,but a recombined biotype which could early differentiate spike and develop coordi-nately,and had better self-regulation ability and potential high productivity. Its yield is stable at 6000-8250 kg/ha.
文摘Several computer packages have been developed to accomplish improved programs for animal breeding and genetic selection. This paper described most of the currant software and provided suggestions for improved software. Khon Kaen University, Thailand, will provide free of charge the new software developed at Khon Kaen University by the author of this paper. The contact for requesting the software is listed: monchai@kku.ac.th.
文摘Most of model cotton varieties used in tissue culture have glands on both the reproductive and vegetative parts of the plant.These glands contain compounds that are toxic to human and non-ruminant animals.The presence of these compounds limits their usage as food and feed.To obtain a glandless cotton variety with high-frequency somatic embryo production ability,27 glandless varieties
文摘The F 1 and F 4 plants of 'synthetic hexaploid wheat/common wheat'crosses and part of their parents were inoculated with Fusarium graminearum to evaluate FHB resistance.The results showed tht the scab resistance in the F 1 varied with the synthetic wheat accessions used as crossing parents.In the F 4,some resistant head lines were generated from the crosses,although their parents had different scab resistance levels.It indicated that synthetic hexaploid wheat are useful in wheat breeding for scab resistance.
文摘The narrow genetic base in potato (Solanum tuberosum L.) limits the progress in cultivar development.The rich diploid germplasm in the origin center of potato provide a unique resource for improvement of tetraploid potatoes.Seven newly developed diploid hybrids with 2n pollen production,all of which have S. phureja background,were developed and evaluated for their value in potato breeding.They were crossed as male parnets to six tetraploid Solanum tuberosum cultivars,and seeds in large quantity from eleven crosses were obtained.Main agronomic traits,such as tuber yield,tuber number,mean tuber weight,tuber shape,eye depth,skin smoothness,flesh color,and specific gravity,were measured for 4x 2x tetraploid progenies in seedling generation,and their parents as well.All of the diploid hybrids had some merit for specific traits and the DH39 was more promising;high specific gravity trait in some diploid hybrids was successfully introgressed into tetroploid progenies via 4x 2x crosses.These diploid hybrids have potential value in potato breeding.