盐体是具有良好气密性的地质构造,有利于油气储存,实现精细化盐体的解释极为必要。然而,不同于断层,盐体的特征较为复杂且形态差异大,常规方法易导致混淆和误判。此外,基于数据驱动的盐体识别模型在实际数据集上的泛化能力较差,因此目...盐体是具有良好气密性的地质构造,有利于油气储存,实现精细化盐体的解释极为必要。然而,不同于断层,盐体的特征较为复杂且形态差异大,常规方法易导致混淆和误判。此外,基于数据驱动的盐体识别模型在实际数据集上的泛化能力较差,因此目前在地震勘探中进行盐体的解释及可视化仍存在挑战。文章将盐体解释视为地震图像的语义分割问题,提出了基于迁移学习的上下文融合与混合注意力的智能盐体分割(Multi-path structure Mixed Attention and Transfer Optimized Net,MMTONet)方法。同时设计了一种基于盐体上下文特征融合模块,进而建立了改进注意力卷积混合的跳跃连接机制,以更好地弥补由下采样造成的信息损失,从而提高模型对盐体边界与高振幅噪声的像素级辨别能力。在此基础上,还设计了迁移学习的适配器微调策略,提升了模型在实际数据上的泛化能力。在地震数据集上的实验结果表明,MMTONet在提高分割精度和减少计算量、参数量方面均优于主流的语义分割方法。展开更多
准确的水体提取对水资源保护、城市规划等方面具有重要的意义。然而,在遥感影像中,由于地物众多、环境复杂且不同水体可能具有不同形态、尺度及光谱特征,水体难免会与其他地物产生类内异质性及类间相似性。现有方法未充分探索边界线索...准确的水体提取对水资源保护、城市规划等方面具有重要的意义。然而,在遥感影像中,由于地物众多、环境复杂且不同水体可能具有不同形态、尺度及光谱特征,水体难免会与其他地物产生类内异质性及类间相似性。现有方法未充分探索边界线索以及未充分利用不同层之间的语义相关性及多尺度表达,导致从遥感影像中准确提取水体仍然是一项挑战性任务。针对这些问题,本文提出了一种边界引导与跨尺度信息交互网络(boundary guidance and cross-scale information interaction network,BGCIINet)用于遥感影像水体提取。首先,本文首次结合Sobel算子提出了一个边界引导(boundary guidance,BG)模块,该模块可以有效捕获低层次特征中的边界线索并高效嵌入解码器为其提供丰富的边界知识;其次,为了加强网络多尺度表达能力,促进层与层之间的信息交流,提出了一个跨尺度信息交互(cross-scale information interaction,CII)模块。在2个数据集上进行了广泛实验,结果表明:本文方法优于其他4种先进方法,在面对挑战性的场景时具有更丰富的边界细节及完整度,能够更好地应用于遥感影像水体提取并为后续研究提供方法借鉴。展开更多
人体图像精细化解析旨在为输入的人体图像进行像素级分类,属于细粒度的图像语义分割任务,由于具有广阔的应用场景,在近10年受到了研究者的关注,相关技术得以迅速发展.本文重点研究现有人体图像解析精细化模型对人体图像语义边缘的预测性...人体图像精细化解析旨在为输入的人体图像进行像素级分类,属于细粒度的图像语义分割任务,由于具有广阔的应用场景,在近10年受到了研究者的关注,相关技术得以迅速发展.本文重点研究现有人体图像解析精细化模型对人体图像语义边缘的预测性能.首先,总结现有人体图像数据集,对比数据集在规模和标注类别方面的差异;其次,根据模型原理性差异,从通用图像语义分割、辅助信息引导、高分辨率特征增益和标签降噪4个方面对现有人体解析方法进行梳理和分类;再次,针对现有评估指标对于语义边缘区域预测能力敏感度不足的问题,构建新的评估指标,即平均边缘交并比(mean Boundary Intersection over Union,mBIoU),并用于对现有模型的评估,从数值上对比各方法的性能差异;最后,展望了人体解析未来的发展方向.研究结果表明:平均边缘交并比相较于现有指标能够更好地区分模型在语义边缘区域预测性能的差异,对人体图像精细化解析模型解决人体解析任务特有挑战的能力具有良好的评估作用,有利于未来算法的开发与性能评估.展开更多
文摘盐体是具有良好气密性的地质构造,有利于油气储存,实现精细化盐体的解释极为必要。然而,不同于断层,盐体的特征较为复杂且形态差异大,常规方法易导致混淆和误判。此外,基于数据驱动的盐体识别模型在实际数据集上的泛化能力较差,因此目前在地震勘探中进行盐体的解释及可视化仍存在挑战。文章将盐体解释视为地震图像的语义分割问题,提出了基于迁移学习的上下文融合与混合注意力的智能盐体分割(Multi-path structure Mixed Attention and Transfer Optimized Net,MMTONet)方法。同时设计了一种基于盐体上下文特征融合模块,进而建立了改进注意力卷积混合的跳跃连接机制,以更好地弥补由下采样造成的信息损失,从而提高模型对盐体边界与高振幅噪声的像素级辨别能力。在此基础上,还设计了迁移学习的适配器微调策略,提升了模型在实际数据上的泛化能力。在地震数据集上的实验结果表明,MMTONet在提高分割精度和减少计算量、参数量方面均优于主流的语义分割方法。
文摘准确的水体提取对水资源保护、城市规划等方面具有重要的意义。然而,在遥感影像中,由于地物众多、环境复杂且不同水体可能具有不同形态、尺度及光谱特征,水体难免会与其他地物产生类内异质性及类间相似性。现有方法未充分探索边界线索以及未充分利用不同层之间的语义相关性及多尺度表达,导致从遥感影像中准确提取水体仍然是一项挑战性任务。针对这些问题,本文提出了一种边界引导与跨尺度信息交互网络(boundary guidance and cross-scale information interaction network,BGCIINet)用于遥感影像水体提取。首先,本文首次结合Sobel算子提出了一个边界引导(boundary guidance,BG)模块,该模块可以有效捕获低层次特征中的边界线索并高效嵌入解码器为其提供丰富的边界知识;其次,为了加强网络多尺度表达能力,促进层与层之间的信息交流,提出了一个跨尺度信息交互(cross-scale information interaction,CII)模块。在2个数据集上进行了广泛实验,结果表明:本文方法优于其他4种先进方法,在面对挑战性的场景时具有更丰富的边界细节及完整度,能够更好地应用于遥感影像水体提取并为后续研究提供方法借鉴。
文摘人体图像精细化解析旨在为输入的人体图像进行像素级分类,属于细粒度的图像语义分割任务,由于具有广阔的应用场景,在近10年受到了研究者的关注,相关技术得以迅速发展.本文重点研究现有人体图像解析精细化模型对人体图像语义边缘的预测性能.首先,总结现有人体图像数据集,对比数据集在规模和标注类别方面的差异;其次,根据模型原理性差异,从通用图像语义分割、辅助信息引导、高分辨率特征增益和标签降噪4个方面对现有人体解析方法进行梳理和分类;再次,针对现有评估指标对于语义边缘区域预测能力敏感度不足的问题,构建新的评估指标,即平均边缘交并比(mean Boundary Intersection over Union,mBIoU),并用于对现有模型的评估,从数值上对比各方法的性能差异;最后,展望了人体解析未来的发展方向.研究结果表明:平均边缘交并比相较于现有指标能够更好地区分模型在语义边缘区域预测性能的差异,对人体图像精细化解析模型解决人体解析任务特有挑战的能力具有良好的评估作用,有利于未来算法的开发与性能评估.