期刊文献+
共找到144篇文章
< 1 2 8 >
每页显示 20 50 100
基于SARIMA-SVM模型的季节性PM_(2.5)浓度预测
1
作者 宋英华 徐亚安 张远进 《计算机工程》 北大核心 2025年第1期51-59,共9页
空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARI... 空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARIMA-SVM)融合模型。该融合模型为串联型融合模型,将数据拆分为线性部分与非线性部分。SARIMA模型在差分自回归滑动平均(ARIMA)模型的基础上增加了季节性因素提取参数,能有效分析PM_(2.5)浓度数据的季节性规律变化趋势,较好地预测数据未来的线性变化趋势。结合SVM模型对预测数据的残差序列进行优化,利用滑动步长预测法确定残差序列的最优预测步长,通过网格搜索确定最优模型参数,实现对PM_(2.5)浓度数据的长期预测,同时提高整体预测精度。通过对武汉市近5年的PM_(2.5)浓度监测数据进行分析,结果表明该融合模型的预测准确率相较于单一模型有很大提升,在相同的实验环境下比单一的ARIMA、Auto ARIMA、SARIMA模型分别提升了99%、99%、98%,稳定性也更好,为PM_(2.5)浓度预测研究提供了新的思路。 展开更多
关键词 季节性差分自回归滑动平均 支持向量机 融合模型 PM_(2.5)浓度 季节性预测
在线阅读 下载PDF
基于SARIMA和SVR组合模型的转向架系统寿命评估 被引量:4
2
作者 师蔚 范乔 +2 位作者 杨洋 胡定玉 廖爱华 《铁道机车车辆》 北大核心 2024年第1期157-163,共7页
随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持... 随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持向量回归(SVR)的组合模型对转向架寿命进行评估。首先,将车辆转向架系统历史故障率转化为健康指数,然后基于协方差优选法将SARIMA和SVR进行赋权组合,根据转向架系统历史健康指数进行预测,最后建立历史和预测的健康指数与运行时间的数学模型,分析得到转向架系统的剩余寿命。以某地铁车辆转向架系统为例进行算例分析及验证,结果表明组合模型可更准确地预测其健康状态,为有关维修部门开展维修维护策略提供理论依据,估计得出其剩余寿命,为车辆寿命后期退役及延寿决策提供理论数据分析支撑。 展开更多
关键词 转向架系统 寿命预测 季节性回归移动平均和支持向量回归(sarima和SVR) 组合模型 协方差优选法
在线阅读 下载PDF
基于SARIMAX-SVR的光伏发电功率预测 被引量:8
3
作者 周鑫 李燕 +1 位作者 曾永辉 石鹏程 《电力系统及其自动化学报》 CSCD 北大核心 2024年第5期1-8,共8页
为提高光伏发电功率预测精度,提出一种基于外生因素及季节性的差分自回归移动平均SARIMAX(seasonal autoregressive integrated moving average with exogenous factors)并结合优化支持向量回归SVR(support vector regression)的光伏发... 为提高光伏发电功率预测精度,提出一种基于外生因素及季节性的差分自回归移动平均SARIMAX(seasonal autoregressive integrated moving average with exogenous factors)并结合优化支持向量回归SVR(support vector regression)的光伏发电功率预测方法。首先,采用相关性特征法聚类气象条件中关键气象因子,以消除数据冗余并降低ARIMAX模型的复杂性;其次,在ARIMAX模型中引入季节性因素,构建SARIMAX模型来捕捉数据的季节性变化;最后,使用SARIMAX模型的拟合残差其作为SVR模型的输入,进一步拟合数据的非线性。通过仿真算例分析表明,所提方法可显著提高光伏发电功率预测精度。 展开更多
关键词 光伏发电 功率预测 差分自回归移动平均 季节性因子 支持向量回归
在线阅读 下载PDF
使用快速傅里叶变换优化周期参数的EMD-FFT-SARIMA光伏发电预测模型 被引量:2
4
作者 熊川羽 廖晓红 +5 位作者 何诗英 陈然 王巍 臧楠 王瀛 肖梦涵 《强激光与粒子束》 CAS CSCD 北大核心 2024年第8期117-123,共7页
根据分布式能源工业园区的光伏电力单元特点,对园区光伏发电功率预测模型进行优化,为后续的调度策略提供数据支持。针对经验模式分解(EMD)与季节性差分自回归移动平均模型(SARIMA)相组合的EMD-SARIMA预测模型中,原始数据经过EMD分解得... 根据分布式能源工业园区的光伏电力单元特点,对园区光伏发电功率预测模型进行优化,为后续的调度策略提供数据支持。针对经验模式分解(EMD)与季节性差分自回归移动平均模型(SARIMA)相组合的EMD-SARIMA预测模型中,原始数据经过EMD分解得到的各固有本征模态函数(IMF)分量周期计算问题,提出加入快速傅里叶变换(FFT)的周期计算方法,建立EMD-FFT-SARIMA光伏发电功率预测模型。再将每个IMF对应的预测结果进行叠加重构得到最终的预测结果。通过预测结果的误差计算可以发现,加入FFT环节后均方根误差(RMSE)从120.6 MW下降到19.3 MW,平均绝对误差(MAE)从52.87 MW下降到12.3 MW。 展开更多
关键词 经验模式分解 季节性差分自回归移动平均模型 周期计算 固有本征模态函数信号分量 快速傅里叶变换 光伏发电预测
在线阅读 下载PDF
融合SARIMA与BiLSTM的水利设施形变预测
5
作者 唐帅 杨涛 +2 位作者 皮明 张良 袁自祥 《现代雷达》 CSCD 北大核心 2024年第3期96-103,共8页
水利设施形变预测可以有效地判断水利设施的运行状态。水利设施安全监测数据是时间序列数据,既有趋势性又有季节性。为了获得更准确的预测结果,文中提出一种基于季节自回归差分移动平均(SARIMA)模型和双向长短时记忆(BiLSTM)网络的预测... 水利设施形变预测可以有效地判断水利设施的运行状态。水利设施安全监测数据是时间序列数据,既有趋势性又有季节性。为了获得更准确的预测结果,文中提出一种基于季节自回归差分移动平均(SARIMA)模型和双向长短时记忆(BiLSTM)网络的预测模型,以解决无法充分挖掘数据中正向与反向的关联进行预测的问题。该模型采用SARIMA模型预测变形数据中的线性分量,采用BiLSTM模型预测变形数据中的非线性分量,使得模型能够更好地提取历史数据中的非线性关系以及正向与反向关系从而提高预测准确度。结合某水电站4#引水涵洞监测数据,使用SARIMA-BiLSTM模型对裂缝计开合度时间序列进行了预测,并与反向传播神经网络模型、SARIMA模型和SARIMA-LSTM模型的预测结果进行对比,比对结果证明所提方法有效地提高了预测精度。 展开更多
关键词 水利设施监测 时间序列预测 趋势性 季节自回归差分移动平均模型 双向长短期记忆网络
在线阅读 下载PDF
基于GBD数据库分析与预测中国鼻咽癌疾病负担
6
作者 宋业勋 刘霞静 +1 位作者 张永全 李和清 《中南大学学报(医学版)》 北大核心 2025年第4期675-683,共9页
目的:鼻咽癌发病位置隐匿导致早期诊断率低,且具有明显的地域聚集性,是中国一个重要的公共卫生问题。本研究旨在通过2021年全球疾病负担(the Global Burden of Diseases,GBD)数据库分析中国鼻咽癌的疾病负担,为鼻咽癌的精准防控提供流... 目的:鼻咽癌发病位置隐匿导致早期诊断率低,且具有明显的地域聚集性,是中国一个重要的公共卫生问题。本研究旨在通过2021年全球疾病负担(the Global Burden of Diseases,GBD)数据库分析中国鼻咽癌的疾病负担,为鼻咽癌的精准防控提供流行病学依据。方法:选取年龄标化发病率、病死率、伤残调整寿命年(disability adjusted life year,DALY)率作为疾病负担的评价指标,按照不同年龄、性别、社会人口学指数及其相关危险因素进行分层分析,同时应用差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型和贝叶斯年龄-时期-队列分析模型(Bayesian age-period-cohort,BAPC)将年龄标化发病率预测至2050年。结果:2021年中国鼻咽癌年龄标化发病率、病死率、DALY率分别为3.4/10万、1.5/10万、48.7/10万,均高于同期全球水平。在所有年龄段,中国男性年龄标化发病率、病死率、DALY率均高于女性。中国鼻咽癌的疾病负担从1990至2021年随着社会人口学指数(socio-demographic index,SDI)的增高逐渐降低。中国归因于饮酒、吸烟、职业甲醛暴露的鼻咽癌疾病负担占比均高于全球水平,且在男性中尤为显著。模型预测中国及全球男性、女性、全人群的年龄标化发病率均提示从2022至2050年呈上升趋势。结论:既往30年中国鼻咽癌的疾病负担随着SDI的升高逐渐降低,但仍高于同期全球水平。同时,中国鼻咽癌的年龄标化发病率在未来30年呈上升趋势。中国仍需进一步增加医疗资源的投入以应对鼻咽癌的防控与诊疗,尤其针对高风险男性群体。 展开更多
关键词 鼻咽癌 疾病负担 社会人口学指数 贝叶斯年龄-时期-队列分析模型 差分自回归移动平均模型
在线阅读 下载PDF
模型和数据联合驱动的ARIMA-IDSSA-LSSVM建筑安全事故预测
7
作者 曹红梅 陈元 《自然灾害学报》 北大核心 2025年第2期129-139,共11页
针对传统单一模型在解决建筑安全事故预测问题存在精度低等问题,考虑模型和数据联合驱动方式,提出一种结合差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型和改进的自适应樽海鞘优化最小二乘支持向量机(improv... 针对传统单一模型在解决建筑安全事故预测问题存在精度低等问题,考虑模型和数据联合驱动方式,提出一种结合差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型和改进的自适应樽海鞘优化最小二乘支持向量机(improved adaptive salp swarm algorithm optimized least squares support vector machine,IDSSA-LSSVM)的组合预测模型。首先利用ARIMA模型获得时序数据中线性部分,利用IDSSA-LSSVM模型分析ARIMA模型获得的残差,获得时序数据中非线性部分;然后通过线性部分和非线性部分相加获得最终组合预测值;最后通过2010—2020年房屋市政工程生产安全事故数据对所提算法进行验证。结果表明,所提预测模型在E_(rmse)上较其他算法分别下降73.73%、77.21%、46.09%、46.80%、78.19%,在E_(mae)上较其他算法分别下降74.20%、77.44%、48.15%、48.85%、77.50%,在E_(mape)上较其他算法分别下降84.95%、87.77%、75.97%、88.49%、80.27%。在不同规模的数据集下,文中算法在E_(rmse)指标下均最优。同时能够通过预测未来阶段事故,提供辅助决策。表明ARIMA-SSA-LSSVM组合模型能够充分挖掘建筑安全事故数据的隐藏信息,在准确性、泛化性和应用性3个角度均表现不错,优势明显。 展开更多
关键词 建筑安全 事故预测 联合驱动 差分自回归移动平均模型 支持向量机
在线阅读 下载PDF
考虑碳排放权交易风险的能源运营商-区域综合能源系统联盟混合博弈优化调度
8
作者 刘英培 信明垚 +1 位作者 秦浩然 单泓元 《电力自动化设备》 北大核心 2025年第6期15-22,49,共9页
随着碳排放权交易市场的不断完善,区域综合能源系统(RIES)在参与碳排放权交易时应充分考虑碳价波动的影响。为此,构建以能源运营商为主体、RIES联盟为从体的混合博弈架构。主体以最大化自身效益为目标制定购售电价策略,从体以供能成本... 随着碳排放权交易市场的不断完善,区域综合能源系统(RIES)在参与碳排放权交易时应充分考虑碳价波动的影响。为此,构建以能源运营商为主体、RIES联盟为从体的混合博弈架构。主体以最大化自身效益为目标制定购售电价策略,从体以供能成本和碳交易成本之和最小为目标进行热能交互,建立RIES联盟合作博弈模型。碳交易成本计及碳排放权价格的不确定性,利用自回归差分移动平均模型及广义自回归条件异方差模型预测调度日的碳价,结合条件风险价值,通过设定不同的风险偏好系数及置信度对碳交易价格波动风险进行量化。基于纳什谈判模型将合作博弈问题拆分成2个子问题,在降低联盟总成本的同时,合理分配RIES联盟的合作收益。通过仿真算例结合遗传算法验证所提策略的有效性,结果表明所提模型可以有效平衡系统的经济性和低碳性,降低碳排放权价格波动风险对调度决策的影响。 展开更多
关键词 区域综合能源系统 碳排放权交易风险 混合博弈 纳什谈判 条件风险价值 自回归差分移动平均模型 广义自回归条件异方差模型 优化调度
在线阅读 下载PDF
基于自回归积分滑动平均模型的无线传感网络通信传输信号延迟消除方法
9
作者 崔蕾 王同 《传感技术学报》 北大核心 2025年第3期543-549,共7页
为了解决受环境影响无线传感网络通信传输信号的延迟问题,提出了一种传输信号延迟消除的方法。将自回归积分滑动平均模型(ARIMA)和小波神经网络(WNN)相结合,进行通信传输信号延迟的组合预测。根据延迟预测结果设计传输信号延迟消除流程... 为了解决受环境影响无线传感网络通信传输信号的延迟问题,提出了一种传输信号延迟消除的方法。将自回归积分滑动平均模型(ARIMA)和小波神经网络(WNN)相结合,进行通信传输信号延迟的组合预测。根据延迟预测结果设计传输信号延迟消除流程的步骤和约束条件,并以此构建无线传感网络通信传输的优化目标函数,引入免疫克隆蛙跳算法对目标函数进行求解,获取最优的传输方案。仿真分析表明,所提方法的延迟预测误差和端到端延迟误差低于0.01 s,能量消耗最大值为6.4 W,平均丢包率最大值为0.286%。上述结果证明了所提方法可以有效准确预测和消除无线传感网络通信传输信号延迟。 展开更多
关键词 无线传感网络 传输信号 延迟消除 自回归积分滑动平均模型 小波神经网络
在线阅读 下载PDF
基于SARIMA模型和条件植被温度指数的干旱预测 被引量:23
10
作者 田苗 王鹏新 +1 位作者 韩萍 张树誉 《农业机械学报》 EI CAS CSCD 北大核心 2013年第2期109-116,共8页
基于时间序列遥感数据反演的条件植被温度指数(VTCI)干旱监测结果,应用季节性求和自回归移动平均模型(SARIMA)对关中平原进行了分区域干旱预测建模,得到了2009年4月上旬至5月下旬每旬1步、2步和3步共18旬的预测结果,并分析了预测精度。... 基于时间序列遥感数据反演的条件植被温度指数(VTCI)干旱监测结果,应用季节性求和自回归移动平均模型(SARIMA)对关中平原进行了分区域干旱预测建模,得到了2009年4月上旬至5月下旬每旬1步、2步和3步共18旬的预测结果,并分析了预测精度。结果表明,SARIMA模型的预测精度随着预测步数的增加而降低,6旬1步预测结果的绝对误差频数分布基本是单峰分布,主要分布在-0.2到0.2之间;6旬2步预测结果的绝对误差频数分布出现双峰分布,3步预测结果绝对误差分布分散,且误差变大。通过分析干旱的时空分布规律,发现关中平原地区干旱具有较明显的区域特征,且1步预测和2步预测结果的干旱时空分布与监测结果较吻合,3步预测结果的不确定性较大,由此得出SARIMA模型适用于关中平原VTCI 1~2步预测研究的结论。 展开更多
关键词 关中平原 干旱预测 条件植被温度指数 季节性求和自回归移动平均模型
在线阅读 下载PDF
SARIMA模型在长沙市肺结核发病预测中的应用 被引量:14
11
作者 谢赐福 王孝君 +2 位作者 熊姿 宋丽新 许林勇 《中国卫生统计》 CSCD 北大核心 2018年第6期859-862,共4页
目的探讨SARIMA模型在肺结核发病预测中的适用性,为长沙市肺结核防控提供参考。方法利用2005年1月-2016年12月长沙市肺结核月发病数构建SARIMA模型,以2017年1-12月的月发病数评价模型的预测效果,并采用构建的最优模型对2018年长沙市肺... 目的探讨SARIMA模型在肺结核发病预测中的适用性,为长沙市肺结核防控提供参考。方法利用2005年1月-2016年12月长沙市肺结核月发病数构建SARIMA模型,以2017年1-12月的月发病数评价模型的预测效果,并采用构建的最优模型对2018年长沙市肺结核月发病情况进行预测。结果长沙市肺结核月发病数具有明显的季节性特征,最优预测模型为SARIMA(0,1,1)(0,1,1)12,其AIC=1436. 703,模型残差为白噪声(χ~2=0. 119,P=0. 731)。该模型的预测值与实际值的平均绝对百分误差为21. 69%,预测效果较为可靠。预计2018年长沙市肺结核的月平均发病数为332. 34例,发病水平与2017年接近,但总体略有下降。结论 SARIMA(0,1,1)(0,1,1)_(12)拟合效果较好,可用于长沙市肺结核月发病数的短期预测。 展开更多
关键词 肺结核 季节自回归求和移动平均模型 时间序列 预测
在线阅读 下载PDF
SARIMA模型在长治市肺结核预测中的应用 被引量:4
12
作者 张喜红 李慧 +1 位作者 曹文君 崔永梅 《中国医科大学学报》 CAS CSCD 北大核心 2018年第7期585-588,共4页
目的应用时间序列季节自回归求和滑动平均(SARIMA)模型探讨长治市肺结核的发病规律,为防控肺结核发生提供依据。方法收集长治市2010年1月至2017年12月肺结核逐月发病数,应用Eviews3.1对2010年1月至2017年6月肺结核发病数建立SARIMA模型... 目的应用时间序列季节自回归求和滑动平均(SARIMA)模型探讨长治市肺结核的发病规律,为防控肺结核发生提供依据。方法收集长治市2010年1月至2017年12月肺结核逐月发病数,应用Eviews3.1对2010年1月至2017年6月肺结核发病数建立SARIMA模型;利用所建SARIMA模型对2017年7月至12月肺结核发病数进行预测,并与实际值对比来评价模型预测效果。利用模型预测长治市2018年1到12月肺结核发病数。结果建立模型SARIMA(2,1,0)×(1,0,1)12,表达式为(1-B)(1+0.657B+0.279B^2)(1-0.906B^12)y_1=(1-0.885B^12)ε_1,y_1=ln(x_1),其中ε_1~WN(0,0,1272),该模型是预测长治市肺结核发病人数的合适模型,2017年7月至12月预测值平均相对误差为5.96%。结论建立了时间序列模型SARIMA(2,1,0)×(1,0,1)12来总结长治市肺结核的发病规律,并有效预测肺结核发病人数。 展开更多
关键词 季节自回归求和滑动平均模型 时间序列 肺结核 预测
在线阅读 下载PDF
适合西藏地区的归一化植被指数预测模型构建及验证
13
作者 孟慧美 吴凌霄 +1 位作者 宣越健 米玛旺堆 《气候与环境研究》 北大核心 2025年第2期199-211,共13页
基于差分自回归移动平均(ARIMA)方法、随机森林(RF)方法、Prophet方法构建适合西藏地区的归一化植被指数(Normalized Difference Vegetation Index,NDVI)预测模型,利用羊八井地区2000~2021年MODIS遥感NDVI数据进行了验证,结果表明:该地... 基于差分自回归移动平均(ARIMA)方法、随机森林(RF)方法、Prophet方法构建适合西藏地区的归一化植被指数(Normalized Difference Vegetation Index,NDVI)预测模型,利用羊八井地区2000~2021年MODIS遥感NDVI数据进行了验证,结果表明:该地区植被覆盖率总体呈现不明显减少趋势;3个预测模型中,RF预测精度最高,其归一化均方根误差、平均绝对百分比误差、决定系数,分别达到了6.92%、4.04%、0.9;小波变换方法能有效提高模型预测精度;组合模型可以提高预测精度,其中误差倒数权重组合模型优于平均权重和方差倒数加权组合模型。因此可以利用RF等机器学习方法结合小波变换、组合模型在西藏地区进行NDVI预测,为生态环境保护和农牧业生产决策提供科学指导。 展开更多
关键词 归一化植被指数(NDVI)预测模型 随机森林(RF)方法 差分自回归移动平均(ARIMA)方法 Prophet方法 小波变换
在线阅读 下载PDF
一种基于SARIMA-LSTM模型的电网主机负载预测方法 被引量:5
14
作者 王堃 郑晨 +1 位作者 张立中 陈志刚 《计算机工程与科学》 CSCD 北大核心 2022年第11期2064-2070,共7页
随着智能电网的不断发展,如何提高对信息设备运行状态的预测准确率以及设置适应数据变化的动态阈值区间是电网IT运维面临的巨大挑战。为了解决这些问题,提出了组合时间序列预测模型(SARIMA-LSTM),即在传统周期性ARIMA模型(SARIMA)的基础... 随着智能电网的不断发展,如何提高对信息设备运行状态的预测准确率以及设置适应数据变化的动态阈值区间是电网IT运维面临的巨大挑战。为了解决这些问题,提出了组合时间序列预测模型(SARIMA-LSTM),即在传统周期性ARIMA模型(SARIMA)的基础上,引入深度学习领域的LSTM模型,并摒弃了过去精度低、效果差的误差拟合方法,使用误差自回归方法来补偿预测结果。该模型可以学习到传统ARIMA模型无法捕捉到的误差波动规律,解决其无法预测非线性数据的问题。实验结果表明,在实际预测电网内存负载数据时,与ARIMA模型和SAIRIMA模型相比,SARIMA-LSTM模型可以实现更高的预测精度。 展开更多
关键词 时间序列 负载预测 周期差分移动平均自回归模型 误差补偿 长短期记忆网络
在线阅读 下载PDF
变分模态分解与时间序列模型相结合的结构损伤识别方法研究
15
作者 姚小俊 孙守鹏 +1 位作者 王强 杨小梅 《振动与冲击》 北大核心 2025年第5期131-139,217,共10页
针对准确定位土木工程结构突变损伤的损伤时刻和损伤位置问题,提出了基于变分模态分解(variational mode decomposition,VMD)与差分整合移动平均自回归(autoregressive integration moving average,ARIMA)模型的突变损伤识别方法。首先... 针对准确定位土木工程结构突变损伤的损伤时刻和损伤位置问题,提出了基于变分模态分解(variational mode decomposition,VMD)与差分整合移动平均自回归(autoregressive integration moving average,ARIMA)模型的突变损伤识别方法。首先,利用自回归模型功率谱确定初始频率及需要分解的模态数量,接着通过VMD方法将振动非平稳信号初步分解为多个平稳的分量信号;然后,利用ARIMA模型来拟合各阶信号分量,获取模型残差,再利用ARIMA拟合模型信号分量得到的模型残差确定损伤的具体时刻;最后,利用主成分分析法获取结构的模态振型,构造一个基于频率与振型的损伤指标,结合损伤阈值定位出损伤位置。该方法通过地震激励下十自由度框架模拟算例以及实际简支钢桁梁桥数据进行分析。结果证实,该方法能够用于平稳及非平稳激励下的结构损伤时刻和损伤位置的定位。 展开更多
关键词 损伤识别 变分模态分解(VMD) 差分整合移动平均自回归(ARIMA)模型 自回归模型功率谱 模型残差
在线阅读 下载PDF
综合岭回归和SARIMA方法在桥梁健康监测数据分析中的应用 被引量:9
16
作者 谌桢文 常军 《科学技术与工程》 北大核心 2023年第20期8846-8853,共8页
桥梁健康监测系统的实测数据普遍存在缺失问题,为了保证桥梁监测数据的完整性,更好地预测桥梁未来的健康状况,提出了一种具有样本内和样本外预测能力的组合模型。样本外预测可以基于现在数据预测未来的桥梁健康状态,样本内回归用于填补... 桥梁健康监测系统的实测数据普遍存在缺失问题,为了保证桥梁监测数据的完整性,更好地预测桥梁未来的健康状况,提出了一种具有样本内和样本外预测能力的组合模型。样本外预测可以基于现在数据预测未来的桥梁健康状态,样本内回归用于填补传感器数据中的缺失值,确保桥梁监测数据的完整性。由于不同位置处相同类型传感器的相关性较强,首先利用岭回归(ridge regression,RR)解决共线性问题,建立各传感器数据之间的关联,并预测缺失数据。接着引入季节性差分自回归滑动平均(seasonal autoregressive integrated moving average,SARIMA)方法,利用其样本外预测能力并结合岭回归方法预测桥梁未来运行数据。最后,将该方法应用于实桥中,验证了其有效性,为传感器数据填补以及预测桥梁未来状态提供了有效的预测模型。 展开更多
关键词 大数据 缺失数据填补 数据预测 岭回归(RR) 季节性差分自回归滑动平均(sarima)
在线阅读 下载PDF
基于SARIMA-GRNN-SVM的短期商业电力负荷组合预测方法 被引量:21
17
作者 徐晶 迟福建 +3 位作者 葛磊蛟 李娟 张梁 羡一鸣 《电力系统及其自动化学报》 CSCD 北大核心 2020年第2期85-91,共7页
针对短期商业电力负荷预测准确性与周期难以满足现有电力现货市场的问题,提出了一种基于SARIMAGRNN-SVM(seasonal autoregressive integrated moving average-generalized regression neural network-support vector machine)的商业电... 针对短期商业电力负荷预测准确性与周期难以满足现有电力现货市场的问题,提出了一种基于SARIMAGRNN-SVM(seasonal autoregressive integrated moving average-generalized regression neural network-support vector machine)的商业电力负荷组合预测模型。首先,对商业电力负荷变化的周期规律与随机因素的复杂影响进行了分析;然后,结合以上分析,选用SARIMA和GRNN为单一预测模型对商业电力负荷进行预测,并利用SVM进行组合,实现日前商业电力负荷预测;最后,通过某商业综合体的电力负荷数据进行验证。所提组合预测模型较单一预测模型拥有更优的预测精度与鲁棒性,可以为短期商业电力负荷预测提供借鉴。 展开更多
关键词 商业电力负荷 短期预测 季节自回归差分移动平均模型 广义回归神经网络 支持向量机
在线阅读 下载PDF
基于水电储能调节的风光水发电联合优化调度策略 被引量:12
18
作者 何奇 张宇 +4 位作者 邓玲 王海亮 谢琼瑶 王春 胡家旗 《广东电力》 北大核心 2024年第3期12-24,共13页
为缓解新能源装机容量扩大引起的弃风弃光现象,在已有梯级水电上下电站之间加入储能泵站,提出风光水储短期优化调度策略。构建以风光水储系统负荷跟踪误差最小、梯级水电站发电量最大和梯级水电站发电耗水量最小的多目标优化调度模型;... 为缓解新能源装机容量扩大引起的弃风弃光现象,在已有梯级水电上下电站之间加入储能泵站,提出风光水储短期优化调度策略。构建以风光水储系统负荷跟踪误差最小、梯级水电站发电量最大和梯级水电站发电耗水量最小的多目标优化调度模型;提出基于季节性自回归移动平均(seasonal auto-regressive lntegrated moving average, SARIMA)模型和Copula函数的风光出力预测模型作为优化调度模型的边界条件,通过SARIMA预测模型将风光出力历史数据分解为季节性分量、趋势分量以及随机噪声余项进行全天96个调度时段风光出力预测,并叠加上基于Copula函数生成风光出力预测误差,然后通过拉丁超立方采样以及K-means聚类进行场景生成和缩减得到5个风光出力场景。选取风光典型日出力数据为例进行算例分析,算例结果表明:所提预测模型较SARIMA模型可以显著提高预测准确度,模型预测风光出力均方根误差从33.34、229.49 MW分别下降至0.697、9.534 MW;所提优化调度策略可以在全年丰、平、枯水期有效减少弃风弃光现象,并可将过剩新能源中的50%转化为上级水库储存水能。 展开更多
关键词 风光出力预测 季节性自回归移动平均模型 COPULA函数 风光水储系统 负荷跟踪
在线阅读 下载PDF
基于ARIMA-TCN混合模型的高速铁路时间同步方法 被引量:1
19
作者 陈永 詹芝贤 张薇 《铁道学报》 EI CAS CSCD 北大核心 2024年第6期90-100,共11页
列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(... 列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(ARIMA-TCN)混合模型的高速铁路时间同步方法。首先,根据上下行链路传输速率的不对称比,建立高速铁路时钟的数学理论和实际观测模型。然后,使用拉依达准则识别处理跳变异常值,完成实际时间序列的预处理。再次,使用ARIMA模型平滑时间序列中不确定时延带来的噪声抖动,获得平稳的时间序列。最后,通过提出的注意力增强TCN模型进行预测补偿,完成时钟偏移的补偿校正。通过实验仿真,得到基站区间内位置、基站间距以及车速对高速铁路时间同步的影响性分析。实验结果表明:与对比方法相比,所提方法补偿后的均方根误差较最小二乘法减少了75%、较最大似然估计方法误差减少了44.4%,较BP神经网络方法误差减少了16.7%,验证所提方法具有更低的同步误差和更高的同步精度。 展开更多
关键词 时间同步 精确时钟协议 差分自回归移动平均模型 注意力增强时域卷积网络 时间补偿
在线阅读 下载PDF
基于改进JRD及误差修正的轴承剩余寿命预测方法 被引量:1
20
作者 刘玉山 张旭帮 +2 位作者 王灵梅 孟恩隆 郭东杰 《机电工程》 北大核心 2024年第1期72-80,共9页
目前,风电机组齿轮箱性能发生初始退化时难以识别,现有退化指标易出现剧烈波动、单调性较差,且无法准确预测齿轮箱关键部件如轴承的剩余使用寿命(RUL),针对该问题,提出了一种基于改进杰森-瑞丽散度(JRD)及误差修正的双指数模型轴承RUL... 目前,风电机组齿轮箱性能发生初始退化时难以识别,现有退化指标易出现剧烈波动、单调性较差,且无法准确预测齿轮箱关键部件如轴承的剩余使用寿命(RUL),针对该问题,提出了一种基于改进杰森-瑞丽散度(JRD)及误差修正的双指数模型轴承RUL预测方法。首先,提取了振动信号样本的多域特征指标,利用高斯混合模型(GMM)与指数型权重JRD,得到了样本的后验概率分布向量,再经归一化处理得到置信值(CV);然后,对轴承从初始健康状态退化至当前检查时刻的CV值进行了相空间重构,提取了CV序列的动力学特征,并将其作为相关向量机(RVM)的训练集,获得了支撑整个退化轨迹的相关向量;最后,利用双指数模型拟合了相关向量,外推趋势至失效门限以计算RUL,并引入了差分整合移动平均自回归模型(ARIMA),对拟合相关向量产生的拟合误差进行了预测,以修正预测的结果。实验结果表明:改进后的退化指标单调性指标提高14.3%;且在不同工况、不同时刻下,经误差修正后的轴承的RUL预测结果较未修正之前有明显提高。研究结果表明:该预测方法可为风电机组齿轮箱重要部件的预测性维护提供参考。 展开更多
关键词 滚动轴承 剩余使用寿命预测 高斯混合模型 杰森-瑞丽散度 误差修正 双指数模型 置信值 差分整合移动平均自回归模型
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部