Accurate modeling and parameter estimation of sea clutter are fundamental for effective sea surface target detection.With the improvement of radar resolution,sea clutter exhibits a pronounced heavy-tailed characterist...Accurate modeling and parameter estimation of sea clutter are fundamental for effective sea surface target detection.With the improvement of radar resolution,sea clutter exhibits a pronounced heavy-tailed characteristic,rendering traditional distribution models and parameter estimation methods less effective.To address this,this paper proposes a dual compound-Gaussian model with inverse Gaussian texture(CG-IG)distribution model and combines it with an improved Adam algorithm to introduce a method for parameter correction.This method effectively fits sea clutter with heavy-tailed characteristics.Experiments with real measured sea clutter data show that the dual CGIG distribution model,after parameter correction,accurately describes the heavy-tailed phenomenon in sea clutter amplitude distribution,and the overall mean square error of the distribution is reduced.展开更多
This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian mod...This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian model with different parameters,and the target is modeled as a subspace rangespread target model.The persymmetric structure is used to model the clutter covariance matrix,in order to reduce the reliance on secondary data of the designed detectors.Three adaptive polarimetric persymmetric detectors are designed based on the generalized likelihood ratio test(GLRT),Rao test,and Wald test.All the proposed detectors have constant falsealarm rate property with respect to the clutter texture,the speckle covariance matrix.Experimental results on simulated and measured data show that three adaptive detectors outperform the competitors in different clutter environments,and the proposed GLRT detector has the best detection performance under different parameters.展开更多
This paper considers the problem of sea clutter sup-pression.We propose the cuttable encoder-decoder-augmenta-tion network(CEDAN)to improve clutter suppression perfor-mance by enriching the contrast information betwee...This paper considers the problem of sea clutter sup-pression.We propose the cuttable encoder-decoder-augmenta-tion network(CEDAN)to improve clutter suppression perfor-mance by enriching the contrast information between the target and clutter.Specifically,the plug-and-play residual U-block(ResUblock)is proposed to augment the feature representation ability of the clutter suppression model.The CEDAN first extracts and fuses the multi-scale features using the encoder and the decoder composed of the ResUblocks.Then,the fused features are processed by the contrast information augmenta-tion module(CIAM)to enhance the diversity of target and clutter,resulting in encouraging sea clutter suppression results.In addi-tion,we propose the result-consistency loss to further improve the suppression performance.The result-consistency loss enables CEDAN to cut some blocks of decoder and CIAM to reduce the inference time without significantly degrading the suppression performance.Experimental results on measured and simulated data show that the CEDAN outperforms state-of-the-art sea clutter suppression methods in sea clutter suppres-sion performance and computation efficiency.展开更多
Radar detection of small targets in sea clutter is a particularly demanding task because of the nonstationary characteristic of sea clutter.The track-before-detect(TBD)filter is an effective way to increase the signal...Radar detection of small targets in sea clutter is a particularly demanding task because of the nonstationary characteristic of sea clutter.The track-before-detect(TBD)filter is an effective way to increase the signal-to-clutter ratio(SCR),thus improving the detection performance of small targets in sea clutter.To cope with the nonstationary characteristic of sea clutter,an easily-implemented Bayesian TBD filter with adaptive detection threshold is proposed and a new parameter estimation method is devised which is integrated into the detection process.The detection threshold is set according to the parameter estimation result under the framework of information theory.For detection of closely spaced targets,those within the same range cell as the one under test are treated as contribution to sea clutter,and a successive elimination method is adopted to detect them.Simulation results prove the effectiveness of the proposed algorithm in detecting small targets in nonstationary sea clutter,especially closely spaced ones.展开更多
This paper studies the development on the first order sea clutter cross section for bistatic high frequency surface wave radar (HFSWR). Based on the received first order electric field expression, a closed-form of cro...This paper studies the development on the first order sea clutter cross section for bistatic high frequency surface wave radar (HFSWR). Based on the received first order electric field expression, a closed-form of cross sections is derived to account for the case of receiving antenna array being mounted on the shipborne platform. The uniform linear motion and sway motion components are assumed to be responsible for the observed differences in comparison with the bistatic fixed antenna case. Correspondingly, simulations are conducted to study the sea clutter spectral characteristics for these two cases versus different system parameters and sea state conditions. It is shown numerically that the forward motion component will spread the Bragg lines severely and the influence triggered by the sway motion can be explained as the Bessel function modulation of the ordinary sea clutter spectra. The obtained results have important implications in the application of shipborne HFSWR technology to ocean remote sensing and target detection.展开更多
The commonly used reflectivity models of radar sea clutter are summarized. Among these models, the adjusted Barton model and the adjusted Morchin model are compared. From the analysis result, the γ-p reflectivity mod...The commonly used reflectivity models of radar sea clutter are summarized. Among these models, the adjusted Barton model and the adjusted Morchin model are compared. From the analysis result, the γ-p reflectivity model is presented for low grazing angle radar sea clutter by the adjustment of the original Barton reflectivity model. The model takes into account radar frequency, grazing angle, sea condition, and polarization property. The influences of these factors on the proposed model are analyzed. The model absorbs the merits from commonly used reflectivity models for sea clutter. It introduces several researchers' opinions, and extends them. And it accounts for the reflectivity at arbitrary radar frequency from VHF to X-band, arbitrary low grazing angle, arbitrary sea condition and different polarization property. One of the main results is the proposed γ-p reflectivity model can reflect the influence of polarization on sea clutter reflectivity to some extent. The proposed γ-p reflectivity model of low-angle radar-sea clutter is validated by comparing the simulated and statistically experimental data.展开更多
文摘Accurate modeling and parameter estimation of sea clutter are fundamental for effective sea surface target detection.With the improvement of radar resolution,sea clutter exhibits a pronounced heavy-tailed characteristic,rendering traditional distribution models and parameter estimation methods less effective.To address this,this paper proposes a dual compound-Gaussian model with inverse Gaussian texture(CG-IG)distribution model and combines it with an improved Adam algorithm to introduce a method for parameter correction.This method effectively fits sea clutter with heavy-tailed characteristics.Experiments with real measured sea clutter data show that the dual CGIG distribution model,after parameter correction,accurately describes the heavy-tailed phenomenon in sea clutter amplitude distribution,and the overall mean square error of the distribution is reduced.
基金supported by the National Natural Science Foundation of China(62371382,62071346)the Science,Technology&Innovation Project of Xiong’an New Area(2022XAGG0181)the Special Funds for Creative Research(2022C61540)。
文摘This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian model with different parameters,and the target is modeled as a subspace rangespread target model.The persymmetric structure is used to model the clutter covariance matrix,in order to reduce the reliance on secondary data of the designed detectors.Three adaptive polarimetric persymmetric detectors are designed based on the generalized likelihood ratio test(GLRT),Rao test,and Wald test.All the proposed detectors have constant falsealarm rate property with respect to the clutter texture,the speckle covariance matrix.Experimental results on simulated and measured data show that three adaptive detectors outperform the competitors in different clutter environments,and the proposed GLRT detector has the best detection performance under different parameters.
基金supported by the National Natural Science Foundation of China(62271126).
文摘This paper considers the problem of sea clutter sup-pression.We propose the cuttable encoder-decoder-augmenta-tion network(CEDAN)to improve clutter suppression perfor-mance by enriching the contrast information between the target and clutter.Specifically,the plug-and-play residual U-block(ResUblock)is proposed to augment the feature representation ability of the clutter suppression model.The CEDAN first extracts and fuses the multi-scale features using the encoder and the decoder composed of the ResUblocks.Then,the fused features are processed by the contrast information augmenta-tion module(CIAM)to enhance the diversity of target and clutter,resulting in encouraging sea clutter suppression results.In addi-tion,we propose the result-consistency loss to further improve the suppression performance.The result-consistency loss enables CEDAN to cut some blocks of decoder and CIAM to reduce the inference time without significantly degrading the suppression performance.Experimental results on measured and simulated data show that the CEDAN outperforms state-of-the-art sea clutter suppression methods in sea clutter suppres-sion performance and computation efficiency.
基金supported by the National Natural Science Foundation of China(61671139)。
文摘Radar detection of small targets in sea clutter is a particularly demanding task because of the nonstationary characteristic of sea clutter.The track-before-detect(TBD)filter is an effective way to increase the signal-to-clutter ratio(SCR),thus improving the detection performance of small targets in sea clutter.To cope with the nonstationary characteristic of sea clutter,an easily-implemented Bayesian TBD filter with adaptive detection threshold is proposed and a new parameter estimation method is devised which is integrated into the detection process.The detection threshold is set according to the parameter estimation result under the framework of information theory.For detection of closely spaced targets,those within the same range cell as the one under test are treated as contribution to sea clutter,and a successive elimination method is adopted to detect them.Simulation results prove the effectiveness of the proposed algorithm in detecting small targets in nonstationary sea clutter,especially closely spaced ones.
基金supported by the National Natural Science Foundation of China(61471144)
文摘This paper studies the development on the first order sea clutter cross section for bistatic high frequency surface wave radar (HFSWR). Based on the received first order electric field expression, a closed-form of cross sections is derived to account for the case of receiving antenna array being mounted on the shipborne platform. The uniform linear motion and sway motion components are assumed to be responsible for the observed differences in comparison with the bistatic fixed antenna case. Correspondingly, simulations are conducted to study the sea clutter spectral characteristics for these two cases versus different system parameters and sea state conditions. It is shown numerically that the forward motion component will spread the Bragg lines severely and the influence triggered by the sway motion can be explained as the Bessel function modulation of the ordinary sea clutter spectra. The obtained results have important implications in the application of shipborne HFSWR technology to ocean remote sensing and target detection.
文摘The commonly used reflectivity models of radar sea clutter are summarized. Among these models, the adjusted Barton model and the adjusted Morchin model are compared. From the analysis result, the γ-p reflectivity model is presented for low grazing angle radar sea clutter by the adjustment of the original Barton reflectivity model. The model takes into account radar frequency, grazing angle, sea condition, and polarization property. The influences of these factors on the proposed model are analyzed. The model absorbs the merits from commonly used reflectivity models for sea clutter. It introduces several researchers' opinions, and extends them. And it accounts for the reflectivity at arbitrary radar frequency from VHF to X-band, arbitrary low grazing angle, arbitrary sea condition and different polarization property. One of the main results is the proposed γ-p reflectivity model can reflect the influence of polarization on sea clutter reflectivity to some extent. The proposed γ-p reflectivity model of low-angle radar-sea clutter is validated by comparing the simulated and statistically experimental data.