芝麻是八大类食物过敏原之一,快速准确识别芝麻过敏原对预防其过敏有重要意义。核酸适配体可以高效识别靶标过敏原,在过敏原检测中有良好的应用前景。为了获得芝麻主要过敏原Ses i 2的特异性核酸适体,本研究以Ses i 2为靶标,通过磁珠筛...芝麻是八大类食物过敏原之一,快速准确识别芝麻过敏原对预防其过敏有重要意义。核酸适配体可以高效识别靶标过敏原,在过敏原检测中有良好的应用前景。为了获得芝麻主要过敏原Ses i 2的特异性核酸适体,本研究以Ses i 2为靶标,通过磁珠筛选法(磁珠-SELEX)开展10轮筛选,经由高通量测序获得6条候补序列(S1~S6),并进行家族性、同源性分析及二级结构预测。结果表明,6条候选核酸适体的重复率可达46.38%,其自由能在-9.02到-2.47 kcal·moL^(-1)之间,根据自由能能量稳定原则,S1和S5吉布斯自由能最低最稳定,分别为-6.70和-9.02 kcal·moL^(-1)。利用ELISA试验进行亲和力测试,结果表明核酸适体S1和S2的亲和能力较强,S1:KD=67.02 nmol·L^(-1),R2=0.925 8,S2:KD=97.65 nmol·L^(-1),R2=0.795 1。核酸适体S1与过敏原Ses i 2的结合力和其他过敏原蛋白相比有显著差异,可视为具有特异性。本研究最终获得一条兼具良好亲和力和特异性的核酸适体S1,为芝麻过敏原快速检测提供了技术支撑。展开更多
尿素氧化反应(UOR)是一种很有前途的可再生能源生产技术,为电解水制氢提供了有效的替代方案,因此开发高效稳定的UOR催化剂至关重要。本文通过NaBH4还原和硒化策略合成了富含Co、Mn和Mo的硒化镍催化剂(NiCoMnMoSe),该催化剂具有球形纳米...尿素氧化反应(UOR)是一种很有前途的可再生能源生产技术,为电解水制氢提供了有效的替代方案,因此开发高效稳定的UOR催化剂至关重要。本文通过NaBH4还原和硒化策略合成了富含Co、Mn和Mo的硒化镍催化剂(NiCoMnMoSe),该催化剂具有球形纳米颗粒与纳米片共存结构。X射线光电子能谱(XPS)、紫外-可见分光光度法(UV-vis)和原位bode相图表明,Mn和Mo的协同效应调节了Ni/Co的电子结构,提高了硒化物的电导率并加速加速电荷转移动力学,从而促进Ni^(2+)/Co^(2+)快速转变为活性Ni^(3+)/Co^(3+),并显著降低了NiCoMnMo-Se的起始电位。在UOR过程中,大部分Mo和Se被氧化成钼酸盐和硒酸盐溶解在电解质中,暴露出更多的Ni(Co)OOH活性位点,从而加快UOR反应。另外,Mn的引入稳固了活性位点,极大地增强催化剂的整体稳定性。正如预期的那样,NiCoMnMo-Se催化剂在UOR过程中表现出优异的电催化和稳定性性能,在仅1.38 V vs.RHE(相对于可逆氢电极)的电位下实现了50 mA·cm^(−2)的电流密度,并在50 mA·cm^(−2)电流密度下运行50 h后电压仅上升3.0%。当NiCoMnMo-Se和商业Pt/C组装成用于碱性尿素电解的双电极体系时,它只需要1.59 V vs.RHE便达到50 mA·cm^(−2)。展开更多
文摘芝麻是八大类食物过敏原之一,快速准确识别芝麻过敏原对预防其过敏有重要意义。核酸适配体可以高效识别靶标过敏原,在过敏原检测中有良好的应用前景。为了获得芝麻主要过敏原Ses i 2的特异性核酸适体,本研究以Ses i 2为靶标,通过磁珠筛选法(磁珠-SELEX)开展10轮筛选,经由高通量测序获得6条候补序列(S1~S6),并进行家族性、同源性分析及二级结构预测。结果表明,6条候选核酸适体的重复率可达46.38%,其自由能在-9.02到-2.47 kcal·moL^(-1)之间,根据自由能能量稳定原则,S1和S5吉布斯自由能最低最稳定,分别为-6.70和-9.02 kcal·moL^(-1)。利用ELISA试验进行亲和力测试,结果表明核酸适体S1和S2的亲和能力较强,S1:KD=67.02 nmol·L^(-1),R2=0.925 8,S2:KD=97.65 nmol·L^(-1),R2=0.795 1。核酸适体S1与过敏原Ses i 2的结合力和其他过敏原蛋白相比有显著差异,可视为具有特异性。本研究最终获得一条兼具良好亲和力和特异性的核酸适体S1,为芝麻过敏原快速检测提供了技术支撑。
文摘尿素氧化反应(UOR)是一种很有前途的可再生能源生产技术,为电解水制氢提供了有效的替代方案,因此开发高效稳定的UOR催化剂至关重要。本文通过NaBH4还原和硒化策略合成了富含Co、Mn和Mo的硒化镍催化剂(NiCoMnMoSe),该催化剂具有球形纳米颗粒与纳米片共存结构。X射线光电子能谱(XPS)、紫外-可见分光光度法(UV-vis)和原位bode相图表明,Mn和Mo的协同效应调节了Ni/Co的电子结构,提高了硒化物的电导率并加速加速电荷转移动力学,从而促进Ni^(2+)/Co^(2+)快速转变为活性Ni^(3+)/Co^(3+),并显著降低了NiCoMnMo-Se的起始电位。在UOR过程中,大部分Mo和Se被氧化成钼酸盐和硒酸盐溶解在电解质中,暴露出更多的Ni(Co)OOH活性位点,从而加快UOR反应。另外,Mn的引入稳固了活性位点,极大地增强催化剂的整体稳定性。正如预期的那样,NiCoMnMo-Se催化剂在UOR过程中表现出优异的电催化和稳定性性能,在仅1.38 V vs.RHE(相对于可逆氢电极)的电位下实现了50 mA·cm^(−2)的电流密度,并在50 mA·cm^(−2)电流密度下运行50 h后电压仅上升3.0%。当NiCoMnMo-Se和商业Pt/C组装成用于碱性尿素电解的双电极体系时,它只需要1.59 V vs.RHE便达到50 mA·cm^(−2)。