Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structu...Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structures.These explosives exhibit significant advantages over traditional compounds,including higher density,greater heats of detonation,improved mechanical hardness,and excellent thermal stability.To effectively evaluate their detonation performance,it is crucial to have a reliable method for predicting detonation heat,velocity,and pressure.This study leverages experimental data and outputs from the leading commercial computer code to identify suitable decomposition pathways for different metal oxides,facilitating straightforward calculations for the detonation performance of alkali metal salts,and metal coordination compounds,along with EMOFs.The new model enhances predictive reliability for detonation velocities,aligning more closely with experimental results,as evi-denced by a root mean square error(RMSE)of 0.68 km/s compared to 1.12 km/s for existing methods.Furthermore,it accommodates a broader range of compounds,including those containing Sr,Cd,and Ag,and provides predictions for EMOFs that are more consistent with computer code outputs than previous predictive models.展开更多
To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bisp...To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bispyridylanthrahydrazone(9,10‑PAH)were designed and synthesized.Utilizing 9‑PAH and 9,10‑PAH as promising anticancer ligands,their respective copper complexes,namely[Cu(L1)Cl_(2)]Cl(1)and{[Cu_(4)(μ_(2)‑Cl)_(3)Cl_(4)(9,10‑PAH)_(2)(DMSO)_(2)]Cl_(2)}_(n)(2),were subsequently synthesized,where the new ligand L1 is formed by coupling two 9‑PAH ligands in the coordination reaction.The chemical and crystal structures of 1 and 2 were elucidated by IR,MS,elemental analysis,and single‑crystal X‑ray diffraction.Complex 1 forms a mononuclear structure.L1 coordinates with Cu through its three N atoms,together with two Cl atoms,to form a five‑coordinated square pyramidal geometry.Complex 2 constitutes a polymeric structure,wherein each structural unit centrosymmetrically encompasses two five‑coordinated binuclear copper complexes(Cu1,Cu2)of 9,10‑PAH,with similar square pyramidal geometry.A chlorine atom(Cl_(2)),located at the symmetry center,bridges Cu1 and Cu1A to connect the two binuclear copper structures.Meanwhile,the two five‑coordinated Cu2 atoms symmetrically bridge the adjacent structural units via one coordinated Cl atom,respectively,thus forming a 1D chain‑like polymeric structure.In vitro anticancer activity assessments revealed that 1 and 2 showed significant cytotoxicity even higher than cisplatin.Specifically,the IC_(50)values of 2 against HeLa‑229 and SK‑OV‑3 cancer cell lines were determined to be(5.92±0.32)μmol·L^(-1)and(6.48±0.39)μmol·L^(-1),respectively.2 could also block the proliferation of HeLa‑229 cells in S phase and significantly induce cell apoptosis.In addition,fluorescence quenching competition experiments suggested that 2 might interact with DNA by an intercalative binding mode,offering insights into its underlying anticancer mechanism.CCDC:2388918,1;2388919,2.展开更多
The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and ...The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and diethylene glycol dinitrate,has been investigated.Extensive characterization of the resulting energetic composites was carried out using scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and differential scanning calorimetry(DSC).Isoconversional kinetic analysis was performed to determine the Arrhenius parameters associated with the thermolysis of the elaborated energetic formulations.It is found that TAG-M complexes have strong catalytic effect on the thermo-kinetic decomposition of NC/DEGDN by decreasing the apparent activation energy and significantly increased the total heat release.The models that govern the decomposition processes are also studied,and it is revealed that different reaction processes are accomplished by introduction metal complexes of triaminoguanidine.Overall,this study serves as a valuable reference for future research focused on the investigation of catalytic combustion features of solid propellants.展开更多
In this study,the electronic transition properties and structural analysis of the metal complexes(Ni(Ⅱ),Co(Ⅱ),Cu(Ⅱ)and Mn(Ⅱ))of three different polymer ligands were performed by using XRF and X-ray diffraction(XRD...In this study,the electronic transition properties and structural analysis of the metal complexes(Ni(Ⅱ),Co(Ⅱ),Cu(Ⅱ)and Mn(Ⅱ))of three different polymer ligands were performed by using XRF and X-ray diffraction(XRD)techniques,respectively.The structural analysis of the polymers and their complexes were performed by XRD technique and some of the polymers were found to be in the face-centred cubic(fcc)structure.In addition,the values of the present K X-ray intensity ratios are significantly greater than the values reported in literature.展开更多
Three types of metal ions barium(Ⅱ),nickel(Ⅱ)and cerium(Ⅲ)complexity of ATN drug have been prepared and characterized using molar conductance method,FT-IR,electronic,and 1H-NMR analysis measurements.The chemical an...Three types of metal ions barium(Ⅱ),nickel(Ⅱ)and cerium(Ⅲ)complexity of ATN drug have been prepared and characterized using molar conductance method,FT-IR,electronic,and 1H-NMR analysis measurements.The chemical and physical results for all atenolol complexes are agreement with the speculated structures.For the divalent(Ba&Ni)and trivalent(Ce)metal atenolol a molar ratio 1∶2 was established.Qualitative chemical analysis showed that for the divalent metal complexes,the chloride ions are not involved in the complexes,suggesting that all of these complexes,[Ba(ATN)2]·2 H2O and[Ni(ATN)2(H2O)2]·4 H2O are neutral.However,for the cerium(Ⅲ)complex,[Ce(ATN)2(NO3)]·3 H2O,the nitrate group is existed inside the coordination sphere.ATN make astable metal complexity with barium(Ⅱ),nickel(Ⅱ)and cerium(Ⅲ)ions.Electronic absorption analysis of Atenolol give two fundamental peaks at 225 nm and 274 nm refers to variation in transition electrons of ligand,UV spectral analysis of the three complexity obtained give asymmetric broad band in the range 200~400 nm,the reults are convenient with the suggestion of metal-nitrogen and metal-oxygen bonds.The infrared analysis data proved that ATN act as bidentate ligand through the N atom of the-NH group and O atom of the deprotonated alcoholic OH group.Nickel(Ⅱ)and cerium(Ⅲ)complexity make six-coordinate geometry,whereas the barium(Ⅱ)complex exhibit four-coordinate geometry.Ni(Ⅱ)-ATN complex has an effective magnetic moment equal 3.12 B.M,that is assigned to octahedral structure.The 1H-NMR spectral results of Ba(Ⅱ)-ATN complexity give strong signal at^4.00 ppm due to protons of-CH2 that influenced by low degree due to complexity.These results confirm the position of chelation through the N atom of the-NH group and O atom of the deprotonated alcoholic OH group.展开更多
基金the research committee at Malek Ashtar University of Technology (MUT) for their invaluable support of this project
文摘Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structures.These explosives exhibit significant advantages over traditional compounds,including higher density,greater heats of detonation,improved mechanical hardness,and excellent thermal stability.To effectively evaluate their detonation performance,it is crucial to have a reliable method for predicting detonation heat,velocity,and pressure.This study leverages experimental data and outputs from the leading commercial computer code to identify suitable decomposition pathways for different metal oxides,facilitating straightforward calculations for the detonation performance of alkali metal salts,and metal coordination compounds,along with EMOFs.The new model enhances predictive reliability for detonation velocities,aligning more closely with experimental results,as evi-denced by a root mean square error(RMSE)of 0.68 km/s compared to 1.12 km/s for existing methods.Furthermore,it accommodates a broader range of compounds,including those containing Sr,Cd,and Ag,and provides predictions for EMOFs that are more consistent with computer code outputs than previous predictive models.
文摘To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bispyridylanthrahydrazone(9,10‑PAH)were designed and synthesized.Utilizing 9‑PAH and 9,10‑PAH as promising anticancer ligands,their respective copper complexes,namely[Cu(L1)Cl_(2)]Cl(1)and{[Cu_(4)(μ_(2)‑Cl)_(3)Cl_(4)(9,10‑PAH)_(2)(DMSO)_(2)]Cl_(2)}_(n)(2),were subsequently synthesized,where the new ligand L1 is formed by coupling two 9‑PAH ligands in the coordination reaction.The chemical and crystal structures of 1 and 2 were elucidated by IR,MS,elemental analysis,and single‑crystal X‑ray diffraction.Complex 1 forms a mononuclear structure.L1 coordinates with Cu through its three N atoms,together with two Cl atoms,to form a five‑coordinated square pyramidal geometry.Complex 2 constitutes a polymeric structure,wherein each structural unit centrosymmetrically encompasses two five‑coordinated binuclear copper complexes(Cu1,Cu2)of 9,10‑PAH,with similar square pyramidal geometry.A chlorine atom(Cl_(2)),located at the symmetry center,bridges Cu1 and Cu1A to connect the two binuclear copper structures.Meanwhile,the two five‑coordinated Cu2 atoms symmetrically bridge the adjacent structural units via one coordinated Cl atom,respectively,thus forming a 1D chain‑like polymeric structure.In vitro anticancer activity assessments revealed that 1 and 2 showed significant cytotoxicity even higher than cisplatin.Specifically,the IC_(50)values of 2 against HeLa‑229 and SK‑OV‑3 cancer cell lines were determined to be(5.92±0.32)μmol·L^(-1)and(6.48±0.39)μmol·L^(-1),respectively.2 could also block the proliferation of HeLa‑229 cells in S phase and significantly induce cell apoptosis.In addition,fluorescence quenching competition experiments suggested that 2 might interact with DNA by an intercalative binding mode,offering insights into its underlying anticancer mechanism.CCDC:2388918,1;2388919,2.
文摘The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and diethylene glycol dinitrate,has been investigated.Extensive characterization of the resulting energetic composites was carried out using scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and differential scanning calorimetry(DSC).Isoconversional kinetic analysis was performed to determine the Arrhenius parameters associated with the thermolysis of the elaborated energetic formulations.It is found that TAG-M complexes have strong catalytic effect on the thermo-kinetic decomposition of NC/DEGDN by decreasing the apparent activation energy and significantly increased the total heat release.The models that govern the decomposition processes are also studied,and it is revealed that different reaction processes are accomplished by introduction metal complexes of triaminoguanidine.Overall,this study serves as a valuable reference for future research focused on the investigation of catalytic combustion features of solid propellants.
基金Scientific Research Fund of Kahramanmaras Sutcu Imam University,Turkey(2012/3-7YLS)
文摘In this study,the electronic transition properties and structural analysis of the metal complexes(Ni(Ⅱ),Co(Ⅱ),Cu(Ⅱ)and Mn(Ⅱ))of three different polymer ligands were performed by using XRF and X-ray diffraction(XRD)techniques,respectively.The structural analysis of the polymers and their complexes were performed by XRD technique and some of the polymers were found to be in the face-centred cubic(fcc)structure.In addition,the values of the present K X-ray intensity ratios are significantly greater than the values reported in literature.
文摘Three types of metal ions barium(Ⅱ),nickel(Ⅱ)and cerium(Ⅲ)complexity of ATN drug have been prepared and characterized using molar conductance method,FT-IR,electronic,and 1H-NMR analysis measurements.The chemical and physical results for all atenolol complexes are agreement with the speculated structures.For the divalent(Ba&Ni)and trivalent(Ce)metal atenolol a molar ratio 1∶2 was established.Qualitative chemical analysis showed that for the divalent metal complexes,the chloride ions are not involved in the complexes,suggesting that all of these complexes,[Ba(ATN)2]·2 H2O and[Ni(ATN)2(H2O)2]·4 H2O are neutral.However,for the cerium(Ⅲ)complex,[Ce(ATN)2(NO3)]·3 H2O,the nitrate group is existed inside the coordination sphere.ATN make astable metal complexity with barium(Ⅱ),nickel(Ⅱ)and cerium(Ⅲ)ions.Electronic absorption analysis of Atenolol give two fundamental peaks at 225 nm and 274 nm refers to variation in transition electrons of ligand,UV spectral analysis of the three complexity obtained give asymmetric broad band in the range 200~400 nm,the reults are convenient with the suggestion of metal-nitrogen and metal-oxygen bonds.The infrared analysis data proved that ATN act as bidentate ligand through the N atom of the-NH group and O atom of the deprotonated alcoholic OH group.Nickel(Ⅱ)and cerium(Ⅲ)complexity make six-coordinate geometry,whereas the barium(Ⅱ)complex exhibit four-coordinate geometry.Ni(Ⅱ)-ATN complex has an effective magnetic moment equal 3.12 B.M,that is assigned to octahedral structure.The 1H-NMR spectral results of Ba(Ⅱ)-ATN complexity give strong signal at^4.00 ppm due to protons of-CH2 that influenced by low degree due to complexity.These results confirm the position of chelation through the N atom of the-NH group and O atom of the deprotonated alcoholic OH group.