In this paper,we provide new sufficient conditions for the existence of positive periodic solutions for a class of indefinite singular differential equation x′′(t)+a(t)x(t)=h(t)/x^(ρ)(t)+g(t)x^(δ)(t)+e(t),whereρ...In this paper,we provide new sufficient conditions for the existence of positive periodic solutions for a class of indefinite singular differential equation x′′(t)+a(t)x(t)=h(t)/x^(ρ)(t)+g(t)x^(δ)(t)+e(t),whereρandδare two positive constants and 0<δ≤1,h,e∈L^(1)(R/TZ),g∈L^(1)(R/TZ)is positive.Our proofs are based on the fixed point theorems(Schauder’s fixed point theorem and Krasnoselskii-Guo fixed point theorem)and the positivity of the associated Green function.展开更多
In this work, we investigate the following fourth-order delay differential equation of boundary value problem with p-Laplacian(Φp(u000))0(t)+a(t)f(t, u(t?τ), u0(t))=0, 0〈t〈1;u000 (0)=u00 (0)=0,...In this work, we investigate the following fourth-order delay differential equation of boundary value problem with p-Laplacian(Φp(u000))0(t)+a(t)f(t, u(t?τ), u0(t))=0, 0〈t〈1;u000 (0)=u00 (0)=0, u0 (1)=αu0 (η);u(t)=0, ?τ ≤t≤0. By using Schauder fixed-point theorem, some su?cient conditions are obtained which guar-antee the fourth-order delay differential equation of boundary value problem with p-Laplacian has at least one positive solution. Some corresponding examples are presented to illustrate the application of our main results.展开更多
The singular higher order nonlinear boundary value problem is studied in this paper. We prove that the problem has a solution by using Schauder fixed point theorem.
基金supported by the Technological Innovation Talents in Universities and Colleges in Henan Province(No.21HASTIT025)the Natural Science Foundation of Henan Province(No.222300420449)the Innovative Research Team of Henan Polytechnic University(No.T2022-7)。
文摘In this paper,we provide new sufficient conditions for the existence of positive periodic solutions for a class of indefinite singular differential equation x′′(t)+a(t)x(t)=h(t)/x^(ρ)(t)+g(t)x^(δ)(t)+e(t),whereρandδare two positive constants and 0<δ≤1,h,e∈L^(1)(R/TZ),g∈L^(1)(R/TZ)is positive.Our proofs are based on the fixed point theorems(Schauder’s fixed point theorem and Krasnoselskii-Guo fixed point theorem)and the positivity of the associated Green function.
基金Foundation item: Supported by the National Natural Science Foundation of China(10801001) Supported by the Natural Science Foundation of Anhui Province(1208085MA13, KJ2009A005Z)
文摘In this work, we investigate the following fourth-order delay differential equation of boundary value problem with p-Laplacian(Φp(u000))0(t)+a(t)f(t, u(t?τ), u0(t))=0, 0〈t〈1;u000 (0)=u00 (0)=0, u0 (1)=αu0 (η);u(t)=0, ?τ ≤t≤0. By using Schauder fixed-point theorem, some su?cient conditions are obtained which guar-antee the fourth-order delay differential equation of boundary value problem with p-Laplacian has at least one positive solution. Some corresponding examples are presented to illustrate the application of our main results.
基金Supported by Ministry of Education of Science and Technology of Important Projects(207047)Natural Science Foundation of Anhui Province of China(050460103)Key Natural Science Foundation by the Bureau of Education of Anhui Province in China(2005kj031ZD)
文摘The singular higher order nonlinear boundary value problem is studied in this paper. We prove that the problem has a solution by using Schauder fixed point theorem.
基金Supported by the National Natural Science Foundation of China (11071001)Anhui Provincial Natural Science Foundation (1208085MA13)+1 种基金the 211 Project of Anhui University (KJTD002B)the Key Project of Anhui Provincial Education Department (KJZ2009A2005Z)
基金Supported by the National Natural Science Foundation of China (11801012)the Key Scientific Research Project of Colleges and Universities of Henan Province (21A110001)。