The noise robustness and parameter estimation performance of the classical three-dimensional estimating signal parameter via rotational invariance techniques(3D-ESPRIT)algorithm are poor when the parameters of the geo...The noise robustness and parameter estimation performance of the classical three-dimensional estimating signal parameter via rotational invariance techniques(3D-ESPRIT)algorithm are poor when the parameters of the geometric theory of the diffraction(GTD)model are estimated at low signal-to-noise ratio(SNR).To solve this problem,a modified 3D-ESPRIT algorithm is proposed.The modified algorithm improves the parameter estimation accuracy by proposing a novel spatial smoothing technique.Firstly,we make cross-correlation of the auto-correlation matrices;then by averaging the cross-correlation matrices of the forward and backward spatial smoothing,we can obtain a novel equivalent spatial smoothing matrix.The formula of the modified algorithm is derived and the performance of this improved method is also analyzed.Then we compare root-meansquare-errors(RMSEs)of different parameters and the locating accuracy obtained by different algorithms.Furthermore,radar cross section(RCS)of radar targets is extrapolated.Simulation results verify the effectiveness and superiority of the modified 3DESPRIT algorithm.展开更多
For discrete-time T-S fuzzy systems, the stability and controller design method are in-vestigated based on parameter-dependent Lyapunov function (PDLF). T-S fuzzy systems di?er fromnon-fuzzy systems with polytopic des...For discrete-time T-S fuzzy systems, the stability and controller design method are in-vestigated based on parameter-dependent Lyapunov function (PDLF). T-S fuzzy systems di?er fromnon-fuzzy systems with polytopic description or multi-model description in that the weighting coef-ficients have respective meanings. They, however, have stability aspect in common. By adopting astability condition for polytopic systems obtained via PDLF, and combining the properties of T-Sfuzzy systems, new results are given in this paper. An example shows that by applying the newresults, the stability conditions that can be distinguished are less conservative.展开更多
Based on the scattering characteristic,the comparison of RCS(radar cross-section)at different positions of a target in the same direction of incidence can be obtained first by extruding or deleting part of the entity....Based on the scattering characteristic,the comparison of RCS(radar cross-section)at different positions of a target in the same direction of incidence can be obtained first by extruding or deleting part of the entity.A simulation method of aerial&space targets echo characteristics(A&STEC)is proposed that is universal to aerial and space targets.We utilize a fixed-wing UAV(unmanned aerial vehicle)and typical missiles in simulation.The echo signal modulation characteristic parameters are calculated theoretically by the atmospheric attenuation model,the finite element method and a MUMPS solver.The verification simulations show that this method can analyze the influence of the target shape,incident direction,detection position and detection frequency on echo waveform,intensity and energy distribution.The results show that the profile of echo waveform can invert the general shape of the target.The relationship between time and intensity can determine whether the target is moving towards or away from the detector in addition.These conclusions can provide a reference for the ballistic missile target tracking and the defense against UVA intrusion in theory.展开更多
To study the Very Fast Transient Over-voltage (VFTO) distribution in transformer windings in gas insulated substation (GIS), a systematic methodology based on S-parameters is presented for establishing high-frequency ...To study the Very Fast Transient Over-voltage (VFTO) distribution in transformer windings in gas insulated substation (GIS), a systematic methodology based on S-parameters is presented for establishing high-frequency model of transformer windings. Firstly, voltage transfer functions are derived from S-parameters which are calculated or measured from transformer windings. Secondly, voltage transfer functions are fitted with rational functions by the vector fitting method and then the rational transfer functions are order-reduced by optimal Pade-approximation algorithm. Lastly, the resultant voltage transfer functions are synthesized by network technology. Computational results are consistent with simulation results of Electromagnetic Transient Program (EMTP) and confirm the feasibility and validity of proposed methodology.展开更多
Micromotion is an important target feature, although the target micromotion has an unfavorable influence on the synthetic aperture radar (SAR) image interpretation due to defocusing. This paper introduces micromotio...Micromotion is an important target feature, although the target micromotion has an unfavorable influence on the synthetic aperture radar (SAR) image interpretation due to defocusing. This paper introduces micromotion parameters into the scattering center model to obtain a hybrid micromotion-scattering center model, and then proposes an optimization algorithm based on the maximal likelihood estimation to solve the model for jointly obtaining target motion and scattering parameters. Initial value estimation methods using targets' ghost images are then presented to guarantee the global and fast convergence. Simulation results show the effectiveness of the proposed algorithm especially in high precision estimation and multiple targets processing.展开更多
Parameter estimation of the attributed scattering center(ASC) model is significant for automatic target recognition(ATR). Sparse representation based parameter estimation methods have developed rapidly. Construction o...Parameter estimation of the attributed scattering center(ASC) model is significant for automatic target recognition(ATR). Sparse representation based parameter estimation methods have developed rapidly. Construction of the separable dictionary is a key issue for sparse representation technology. A compressive time-domain dictionary(TD) for ASC model is presented. Two-dimensional frequency domain responses of the ASC are produced and transformed into the time domain. Then these time domain responses are cutoff and stacked into vectors. These vectored time-domain responses are amalgamated to form the TD. Compared with the traditional frequency-domain dictionary(FD), the TD is a matrix that is quite spare and can markedly reduce the data size of the dictionary. Based on the basic TD construction method, we present four extended TD construction methods, which are available for different applications. In the experiments, the performance of the TD, including the basic model and the extended models, has been firstly analyzed in comparison with the FD. Secondly, an example of parameter estimation from SAR synthetic aperture radar(SAR) measurements of a target collected in an anechoic room is exhibited. Finally, a sparse image reconstruction example is from two apart apertures. Experimental results demonstrate the effectiveness and efficiency of the proposed TD.展开更多
为实现电力系统次/超同步振荡的快速、准确辨识,提出了一种基于同步压缩广义S变换(synchrosqueezing generalized S transform, SSGST)和改进稀疏时域法(improved sparse time domain method,ISTD)结合的次/超同步振荡辨识方法。该方法...为实现电力系统次/超同步振荡的快速、准确辨识,提出了一种基于同步压缩广义S变换(synchrosqueezing generalized S transform, SSGST)和改进稀疏时域法(improved sparse time domain method,ISTD)结合的次/超同步振荡辨识方法。该方法首先利用能量比函数对电力系统广域量测信息实时检测,当检测到信号能量发生突变时,利用SSGST对检测到的振荡信号分解得到相应的SSGST时频系数矩阵;然后通过改进的脊线提取方法在时频域实现对各振荡分量的最优轨迹搜索;进一步,结合最优轨迹时频索引重构各振荡分量的时域分量,并利用ISTD辨识方法计算出各振荡分量的频率和阻尼比系数;最后,通过自合成模拟信号、双馈风电场经串补并网系统仿真信号和某实际风电场实测数据验证了所提方法的准确性和有效性。展开更多
基金This work was supported by the National Natural Science Foundation of China(61372033).
文摘The noise robustness and parameter estimation performance of the classical three-dimensional estimating signal parameter via rotational invariance techniques(3D-ESPRIT)algorithm are poor when the parameters of the geometric theory of the diffraction(GTD)model are estimated at low signal-to-noise ratio(SNR).To solve this problem,a modified 3D-ESPRIT algorithm is proposed.The modified algorithm improves the parameter estimation accuracy by proposing a novel spatial smoothing technique.Firstly,we make cross-correlation of the auto-correlation matrices;then by averaging the cross-correlation matrices of the forward and backward spatial smoothing,we can obtain a novel equivalent spatial smoothing matrix.The formula of the modified algorithm is derived and the performance of this improved method is also analyzed.Then we compare root-meansquare-errors(RMSEs)of different parameters and the locating accuracy obtained by different algorithms.Furthermore,radar cross section(RCS)of radar targets is extrapolated.Simulation results verify the effectiveness and superiority of the modified 3DESPRIT algorithm.
文摘For discrete-time T-S fuzzy systems, the stability and controller design method are in-vestigated based on parameter-dependent Lyapunov function (PDLF). T-S fuzzy systems di?er fromnon-fuzzy systems with polytopic description or multi-model description in that the weighting coef-ficients have respective meanings. They, however, have stability aspect in common. By adopting astability condition for polytopic systems obtained via PDLF, and combining the properties of T-Sfuzzy systems, new results are given in this paper. An example shows that by applying the newresults, the stability conditions that can be distinguished are less conservative.
文摘Based on the scattering characteristic,the comparison of RCS(radar cross-section)at different positions of a target in the same direction of incidence can be obtained first by extruding or deleting part of the entity.A simulation method of aerial&space targets echo characteristics(A&STEC)is proposed that is universal to aerial and space targets.We utilize a fixed-wing UAV(unmanned aerial vehicle)and typical missiles in simulation.The echo signal modulation characteristic parameters are calculated theoretically by the atmospheric attenuation model,the finite element method and a MUMPS solver.The verification simulations show that this method can analyze the influence of the target shape,incident direction,detection position and detection frequency on echo waveform,intensity and energy distribution.The results show that the profile of echo waveform can invert the general shape of the target.The relationship between time and intensity can determine whether the target is moving towards or away from the detector in addition.These conclusions can provide a reference for the ballistic missile target tracking and the defense against UVA intrusion in theory.
基金the I mportant National Science Foundation of Hebei Province (E2006001036)Science and Tech-nology Project of Hebei Province (072156167)
文摘To study the Very Fast Transient Over-voltage (VFTO) distribution in transformer windings in gas insulated substation (GIS), a systematic methodology based on S-parameters is presented for establishing high-frequency model of transformer windings. Firstly, voltage transfer functions are derived from S-parameters which are calculated or measured from transformer windings. Secondly, voltage transfer functions are fitted with rational functions by the vector fitting method and then the rational transfer functions are order-reduced by optimal Pade-approximation algorithm. Lastly, the resultant voltage transfer functions are synthesized by network technology. Computational results are consistent with simulation results of Electromagnetic Transient Program (EMTP) and confirm the feasibility and validity of proposed methodology.
基金supported by the National Natural Science Foundation for Young Scientists of China (61101182)
文摘Micromotion is an important target feature, although the target micromotion has an unfavorable influence on the synthetic aperture radar (SAR) image interpretation due to defocusing. This paper introduces micromotion parameters into the scattering center model to obtain a hybrid micromotion-scattering center model, and then proposes an optimization algorithm based on the maximal likelihood estimation to solve the model for jointly obtaining target motion and scattering parameters. Initial value estimation methods using targets' ghost images are then presented to guarantee the global and fast convergence. Simulation results show the effectiveness of the proposed algorithm especially in high precision estimation and multiple targets processing.
基金Project(NCET-11-0866)supported by Education Ministry's new Century Excellent Talents Supporting Plan,China
文摘Parameter estimation of the attributed scattering center(ASC) model is significant for automatic target recognition(ATR). Sparse representation based parameter estimation methods have developed rapidly. Construction of the separable dictionary is a key issue for sparse representation technology. A compressive time-domain dictionary(TD) for ASC model is presented. Two-dimensional frequency domain responses of the ASC are produced and transformed into the time domain. Then these time domain responses are cutoff and stacked into vectors. These vectored time-domain responses are amalgamated to form the TD. Compared with the traditional frequency-domain dictionary(FD), the TD is a matrix that is quite spare and can markedly reduce the data size of the dictionary. Based on the basic TD construction method, we present four extended TD construction methods, which are available for different applications. In the experiments, the performance of the TD, including the basic model and the extended models, has been firstly analyzed in comparison with the FD. Secondly, an example of parameter estimation from SAR synthetic aperture radar(SAR) measurements of a target collected in an anechoic room is exhibited. Finally, a sparse image reconstruction example is from two apart apertures. Experimental results demonstrate the effectiveness and efficiency of the proposed TD.
文摘为实现电力系统次/超同步振荡的快速、准确辨识,提出了一种基于同步压缩广义S变换(synchrosqueezing generalized S transform, SSGST)和改进稀疏时域法(improved sparse time domain method,ISTD)结合的次/超同步振荡辨识方法。该方法首先利用能量比函数对电力系统广域量测信息实时检测,当检测到信号能量发生突变时,利用SSGST对检测到的振荡信号分解得到相应的SSGST时频系数矩阵;然后通过改进的脊线提取方法在时频域实现对各振荡分量的最优轨迹搜索;进一步,结合最优轨迹时频索引重构各振荡分量的时域分量,并利用ISTD辨识方法计算出各振荡分量的频率和阻尼比系数;最后,通过自合成模拟信号、双馈风电场经串补并网系统仿真信号和某实际风电场实测数据验证了所提方法的准确性和有效性。