期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
KMDW和ISVDD方法在钻头磨损状态识别中的应用
1
作者 郝旺身 娄本池 +4 位作者 董辛旻 王林恒 朱春辉 陈世金 王亚坤 《重庆理工大学学报(自然科学)》 北大核心 2025年第7期179-186,共8页
为识别钻头的磨损状态,解决多分类过程中支持向量数据描述(SVDD)对混叠样本识别精度差的问题,提出一种基于结合K均值密度权重(KMDW)聚类和改进SVDD(ISVDD)的方法。采用小波包分解多尺度排列熵值(WPD-MPE)方法提取特征向量;结合KMDW和SVD... 为识别钻头的磨损状态,解决多分类过程中支持向量数据描述(SVDD)对混叠样本识别精度差的问题,提出一种基于结合K均值密度权重(KMDW)聚类和改进SVDD(ISVDD)的方法。采用小波包分解多尺度排列熵值(WPD-MPE)方法提取特征向量;结合KMDW和SVDD模型进行故障分类,对混叠样本采用K近邻隶属度值进行识别,并采用改进的蝴蝶优化算法(IBOA)优化SVDD模型参数。在标准数据集上验证所提方法的优越性,结果表明:加入K近邻隶属度值可使F值和准确率分别提升6.36%和6.59%;KMDW相比K均值聚类方法的ARI值和NMI值分别提升10.01%和10.75%,能够达到更好的聚类效果;经蝴蝶优化算法改进后模型识别精度进一步提高。将所提方法应用于钻头磨损状态的识别,识别准确率达到92.83%,证明其具有较好的识别精度和通用性。 展开更多
关键词 svdd K均值密度权重聚类 蝴蝶优化算法 K近邻算法 钻头磨损状态识别
在线阅读 下载PDF
基于模糊SVDD的电子装备状态评估模型研究 被引量:8
2
作者 杨森 孟晨 王成 《计算机工程与设计》 CSCD 北大核心 2013年第2期676-680,共5页
为有效解决电子装备的状态评估问题,提出了一种将模糊理论和SVDD算法相结合的电子装备状态评估模型。首先,采用模糊理论对电子装备健康状态进行了描述,将普通意义上的状态表述形式转化为了模糊特征描述;然后,采用正常状态样本建立了基... 为有效解决电子装备的状态评估问题,提出了一种将模糊理论和SVDD算法相结合的电子装备状态评估模型。首先,采用模糊理论对电子装备健康状态进行了描述,将普通意义上的状态表述形式转化为了模糊特征描述;然后,采用正常状态样本建立了基于模糊SVDD的电子装备状态评估模型,并以健康度为评估指标,对装备退化状态样本进行了状态评估;最后,以某电子装备滤波电路为例进行了验证,仿真结果表明,该模型用于电子装备状态评估是行之有效的。 展开更多
关键词 电子装备 模糊理论 svdd算法 模糊svdd模型 状态评估
在线阅读 下载PDF
基于非下采样Contourlet变换的异常检测SVDD算法 被引量:2
3
作者 陈海挺 《红外技术》 CSCD 北大核心 2016年第1期47-52,共6页
由于图像复杂背景信息的干扰,一般检测算法的应用受到了限制,致使异常检测的虚警率较高,而基于支持向量数据描述(Support Vector Data Description,SVDD)的异常检测算法不需要对背景或者目标数据作任何分布假设,可将原始数据映射到高维... 由于图像复杂背景信息的干扰,一般检测算法的应用受到了限制,致使异常检测的虚警率较高,而基于支持向量数据描述(Support Vector Data Description,SVDD)的异常检测算法不需要对背景或者目标数据作任何分布假设,可将原始数据映射到高维特征空间进行异常检测。基于此,本文提出了一种基于非下采样Contourlet变换的异常检测SVDD算法。算法首先对高光谱数据进行NSCT(Nonsubsampled Contourlet Transform)分解,得到高频信息图像和低频信息图像;然后对低频信息作差,得到背景残差数据,抑制了背景信息;接着通过加权融合得到背景抑制后的高光谱图像,最后利用非线性SVDD将背景抑制后的高光谱图像映射到高维特征空间,完成异常目标的检测。通过仿真实验验证可知,所提出的算法与RX算法、KRX算法和未进行背景抑制的SVDD算法相比,具有较低的异常检测虚警率和优良的检测性能。 展开更多
关键词 高光谱图像 异常检测 非下采样CONTOURLET变换 svdd算法
在线阅读 下载PDF
基于DPC-SVDD的制造过程异常诊断 被引量:1
4
作者 沈维蕾 杨雪春 吴善春 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2022年第4期433-439,共7页
文章针对生产过程中质量数据分布类型未知引起的传统质量控制图异常检测精度低的问题,提出结合支持向量数据描述(support vector data description,SVDD)和密度峰值聚类(density peaks clustering,DPC)的制造过程异常检测方法。采用DPC... 文章针对生产过程中质量数据分布类型未知引起的传统质量控制图异常检测精度低的问题,提出结合支持向量数据描述(support vector data description,SVDD)和密度峰值聚类(density peaks clustering,DPC)的制造过程异常检测方法。采用DPC算法对质量特征数据进行聚类分析,将聚类结果作为模型输入训练得到各类超球体中心和决策边界;以此建立基于内核距离的DPC控制图,实现对生产过程质量波动的实时监控;最后将该控制图应用到再制造曲轴生产过程监控中。结果表明,该文提出的DPC控制图可以有效监测再制造曲轴生产过程质量异常波动,验证了该检测方法的可行性和有效性。 展开更多
关键词 支持向量数据描述(svdd)算法 密度峰值聚类(DPC)算法 异常检测 密度峰值聚类(DPC)控制图
在线阅读 下载PDF
基于NSGA-Ⅱ和SVDD的转向架构架异常状态监测 被引量:3
5
作者 李鹏 黄培炜 +2 位作者 丁瀛 杜艺博 彭嘉潮 《传感技术学报》 CAS CSCD 北大核心 2021年第7期874-879,共6页
转向架构架状态监测是保证轨道车辆安全运营的重要途径。研究提出了一种基于NSGA-Ⅱ和SVDD的转向架构架异常状态监测方法,针对构架异常状态下样本集的随机多样和不确定性,引入SVDD算法,以构架正常状态的样本集构建SVDD超球体模型对多工... 转向架构架状态监测是保证轨道车辆安全运营的重要途径。研究提出了一种基于NSGA-Ⅱ和SVDD的转向架构架异常状态监测方法,针对构架异常状态下样本集的随机多样和不确定性,引入SVDD算法,以构架正常状态的样本集构建SVDD超球体模型对多工况条件下构架的异常状态进行识别。同时以SVDD超球体半径定义优化目标函数f1(传感器数量)和f2(超球体聚类指标),并基于NSGA-Ⅱ算法对传感器分布进行了优化。在此基础上,搭建转向架构架状态监测实验平台,对多工况条件下构架的异常状态识别进行研究。结果表明:(1)经优化后的传感器分布方案能有效获取转向架构架状态监测数据,当优化方案中传感器数量达到3时,识别率达到91.33%;(2)以转向架构架正常状态样本集构建的SVDD模型对异常状态具有很好的识别效果。 展开更多
关键词 结构状态监测 传感器分布优化 遗传算法 支持向量数据描述 非劣分层
在线阅读 下载PDF
基于LTSA-Greedy-SVDD的过程监控 被引量:1
6
作者 杨正永 王昕 王振雷 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期343-348,共6页
为解决实际工业过程中的非线性和非高斯问题,实现有效的过程监控,提出了一种基于局部切空间排列算法的过程监控方法。首先运用局部切空间排列算法对标准化后的正常样本数据提取出低维子流形以实现维数约减。之后利用Greedy方法提取特征... 为解决实际工业过程中的非线性和非高斯问题,实现有效的过程监控,提出了一种基于局部切空间排列算法的过程监控方法。首先运用局部切空间排列算法对标准化后的正常样本数据提取出低维子流形以实现维数约减。之后利用Greedy方法提取特征样本以支持向量数据描述方法建立监控模型,最后采用相应统计量进行过程监控。以田纳西伊斯曼(TE)模型为仿真平台,仿真结果说明了该方法的有效性。 展开更多
关键词 非线性 局部切空间排列(LTSA)算法 Greedy方法 支持向量数据描述
在线阅读 下载PDF
基于CF特征提取与MBA-SVDD的滚动轴承故障诊断 被引量:5
7
作者 张训杰 袁毅 +1 位作者 李贤均 张敏 《机床与液压》 北大核心 2022年第1期182-188,共7页
针对滚动轴承振动信号呈现出的非平稳特性以及早期故障特征难以提取的问题,提出一种基于变分模态分解与时域、频域值混合的特征提取方法,并利用改进蝙蝠算法(MBA)优化支持向量数据描述(SVDD)的参数,实现对滚动轴承的故障诊断。采用该方... 针对滚动轴承振动信号呈现出的非平稳特性以及早期故障特征难以提取的问题,提出一种基于变分模态分解与时域、频域值混合的特征提取方法,并利用改进蝙蝠算法(MBA)优化支持向量数据描述(SVDD)的参数,实现对滚动轴承的故障诊断。采用该方法对正常振动信号进行变分模态分解,得到模态函数;利用奇异值分解进一步提取模态函数的模态特征,同时提取信号的时域、频域特征与模态特征构造混合特征(CF)实现特征提取;利用改进蝙蝠算法(MBA)对SVDD核函数宽度进行参数寻优,进而构建CF-MBA-SVDD故障诊断模型。利用该模型对不同工况下滚动轴承的各类振动信号进行故障诊断,整体故障识别率均优于其他对比算法。对全寿命周期轴承实验数据进行诊断分析,结果表明:该模型能够较早预警轴承故障,验证了该方法的可靠性和有效性。 展开更多
关键词 变分模态分解 复合特征提取 改进蝙蝠算法(MBA) 支持向量数据描述(svdd) 故障诊断
在线阅读 下载PDF
基于WMNPE间歇过程监测的改进SVDD算法
8
作者 惠永永 赵小强 《兰州理工大学学报》 CAS 北大核心 2018年第6期107-111,共5页
间歇过程数据包含表征过程变化的相关信息和非相关信息,并且呈现高斯与非高斯的多分布等特点.为了更加充分地提取数据的有用信息和处理数据的非高斯性等问题,实现有效的过程监控,提出一种基于WMNPE间歇过程监测的改进SVDD算法.首先运用... 间歇过程数据包含表征过程变化的相关信息和非相关信息,并且呈现高斯与非高斯的多分布等特点.为了更加充分地提取数据的有用信息和处理数据的非高斯性等问题,实现有效的过程监控,提出一种基于WMNPE间歇过程监测的改进SVDD算法.首先运用多向邻域保持嵌入(MNPE)算法来提取低维子流形以实现降维;再使用概率权值策略来提取表征过程变化的相关信息,通过Greedy方法提取低维子流形的特征样本;最后以支持向量数据描述(SVDD)方法建立监控模型进行监控.通过青霉素发酵过程仿真平台验证了所提算法的有效性. 展开更多
关键词 间歇过程 过程监控 多向邻域保持嵌入(MNPE)算法 支持向量数据描述(svdd)
在线阅读 下载PDF
单类学习下基于VSAPSO-BP的掘进机异常检测方法 被引量:6
9
作者 杨健健 唐至威 +2 位作者 王晓林 王子瑞 吴淼 《振动.测试与诊断》 EI CSCD 北大核心 2019年第1期130-135,226,共7页
针对掘进机回转台异常检测中故障数据缺失以及故障程度划分的问题,提出一种单类学习下基于VSAP-SO-BP的掘进机异常检测方法。使用支持向量数据描述(support vector data description,简称SVDD)方法对回转台健康数据进行单类学习,根据现... 针对掘进机回转台异常检测中故障数据缺失以及故障程度划分的问题,提出一种单类学习下基于VSAP-SO-BP的掘进机异常检测方法。使用支持向量数据描述(support vector data description,简称SVDD)方法对回转台健康数据进行单类学习,根据现场经验构造非健康样本数据集,以SVDD对非健康样本数据集的识别率为依据,把非健康样本数据分为故障临界数据与故障数据,提出变异自适应粒子群优化(variation self-adapting particleswarm optimization,简称VSAPSO)算法,构建VSAPSO-BP神经网络对健康、故障临界与故障3类数据进行检测,检测准确率为91.7%,与传统PSO-BP方法相比具有更高的准确性与稳定性。实验结果表明,采用单类学习下基于VSAPSO-BP的掘进机异常检测方法可以准确有效地检测掘进机回转台异常,具有较高的应用价值。 展开更多
关键词 掘进机回转台 异常检测 支持向量数据描述 粒子群优化算法 BP神经网络
在线阅读 下载PDF
基于宏微观因素的概率级别的车辆事故预测 被引量:2
10
作者 张力天 孔嘉漪 +2 位作者 樊一航 范灵俊 包尔固德 《计算机研究与发展》 EI CSCD 北大核心 2021年第9期2052-2061,共10页
车辆事故预测是避免道路车辆事故发生的重要研究课题.以往的研究使用的事故数据集只包含地理情况、环境情况、交通情况等宏观因素,或者只包含车辆行为和驾驶员行为等微观因素.因为很难收集到同时包含2类因素的事故数据集,很少有研究将这... 车辆事故预测是避免道路车辆事故发生的重要研究课题.以往的研究使用的事故数据集只包含地理情况、环境情况、交通情况等宏观因素,或者只包含车辆行为和驾驶员行为等微观因素.因为很难收集到同时包含2类因素的事故数据集,很少有研究将这2类因素结合起来,然而车辆事故往往是两者共同作用的结果.此外,在收集到的数据中没有可以用于预测的事故发生概率标签,所以目前多数的研究关注点只是在于事故是否发生而不能得到准确的概率值.然而在实际应用场景下,驾驶员需要的是不同级别的危险预警信号,而这种信号正是应该由事故概率值决定的.2019年发布的事故宏观因素数据集OSU(Ohio State University)与宏观因素数据集FARS(fatality analysis reporting system)和微观因素数据集SHRP2(strategic highway research program 2)都具有一些相同的特征,为它们的融合提供了机遇.因此,首先得到了一个同时包含宏观和微观因素的数据集,其中事故数据(正样本)融合自OSU、FARS数据集,以及与SHRP2分布相同的数据集Sim-SHRP2(simulated strategic highway research program 2),而安全驾驶数据(负样本)则由自己驾驶汽车获得.然后,针对收集到的数据中没有概率标签的问题,还设计了一个概率级别的无监督深度学习框架来预测准确的概率值,该框架使用迭代的方式为数据集生成准确的概率标签,并使用这些概率标签来进行训练.实验结果表明,该框架可以使用所得到的数据集来灵敏而准确地预测车辆事故. 展开更多
关键词 车辆事故 事故预测 宏微观因素 深度学习框架 deep-svdd算法
在线阅读 下载PDF
根生群优化算法
11
作者 吴正军 冯翔 虞慧群 《计算机应用研究》 CSCD 北大核心 2019年第1期22-26,52,共6页
针对全局优化问题,基于一类支持向量数据描述(SVDD)和已有的根系生长算法提出一种新的智能优化算法——根生群优化算法,将根系划分为主根群体和侧根群体。基于SVDD描述主根群体的生长行为,将土壤中养分浓度最高的位置作为全局优化的目标... 针对全局优化问题,基于一类支持向量数据描述(SVDD)和已有的根系生长算法提出一种新的智能优化算法——根生群优化算法,将根系划分为主根群体和侧根群体。基于SVDD描述主根群体的生长行为,将土壤中养分浓度最高的位置作为全局优化的目标,构建了根系生长模型;分析了RGSO的数学模型,从理论上证明了RGSO的收敛性。在实验中,与当前最先进的其他三种算法进行综合比较,并观察了不同参数对优化效果的影响。实验结果验证了RGSO的收敛性和有效性,表明RGSO是一种解决全局优化问题的有效算法。 展开更多
关键词 根生算法 分群机制 svdd 优化问题
在线阅读 下载PDF
基于遗传算法和支持向量数据描述的多项式轮廓内自相关过程监控 被引量:1
12
作者 薛丽 贾元忠 曹逗逗 《计算机应用》 CSCD 北大核心 2022年第S02期285-289,共5页
多项式轮廓数据在复杂产品制造过程中是一类广泛存在的质量数据类型。为了能尽快监测出多项式轮廓内自相关过程中的异常,针对仅存在正常样本的质量数据提出一种基于支持向量数据描述(SVDD)的监控方法。首先,消除轮廓间相关性,构建SVDD... 多项式轮廓数据在复杂产品制造过程中是一类广泛存在的质量数据类型。为了能尽快监测出多项式轮廓内自相关过程中的异常,针对仅存在正常样本的质量数据提出一种基于支持向量数据描述(SVDD)的监控方法。首先,消除轮廓间相关性,构建SVDD监控方法流程,运用遗传算法(GA)选择SVDD参数和核函数参数进行仿真;然后,通过仿真实验模拟得到平均运行长度,以平均运行长度为准则,对比分析采用高斯核函数和多项式核函数SVDD方法的监控性能;最后,与传统控制图进行对比。实验结果表明监控截距、一次项系数、二次项系数时,采用多项式核函数SVDD方法的失控平均运行长度小于T^(2)、T_(residual)^(2)控制图,即监控效果优于其他控制图。 展开更多
关键词 多项式轮廓 自相关过程 支持向量数据描述 遗传算法 核函数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部