Being as unique nonlinear components of block ciphers,substitution boxes(S-boxes) directly affect the security of the cryptographic systems.It is important and difficult to design cryptographically strong S-boxes th...Being as unique nonlinear components of block ciphers,substitution boxes(S-boxes) directly affect the security of the cryptographic systems.It is important and difficult to design cryptographically strong S-boxes that simultaneously meet with multiple cryptographic criteria such as bijection,non-linearity,strict avalanche criterion(SAC),bits independence criterion(BIC),differential probability(DP) and linear probability(LP).To deal with this problem,a chaotic S-box based on the artificial bee colony algorithm(CSABC) is designed.It uses the S-boxes generated by the six-dimensional compound hyperchaotic map as the initial individuals and employs ABC to improve their performance.In addition,it considers the nonlinearity and differential uniformity as the fitness functions.A series of experiments have been conducted to compare multiple cryptographic criteria of this algorithm with other algorithms.Simulation results show that the new algorithm has cryptographically strong S-box while meeting multiple cryptographic criteria.展开更多
Ubiquitous computing must incorporate a certain level of security. For the severely resource constrained applications, the energy-efficient and small size cryptography algorithm implementation is a critical problem. H...Ubiquitous computing must incorporate a certain level of security. For the severely resource constrained applications, the energy-efficient and small size cryptography algorithm implementation is a critical problem. Hardware implementations of the advanced encryption standard (AES) for authentication and encryption are presented. An energy consumption variable is derived to evaluate low-power design strategies for battery-powered devices. It proves that compact AES architectures fail to optimize the AES hardware energy, whereas reducing invalid switching activities and implementing power-optimized sub-modules are the reasonable methods. Implementations of different substitution box (S-Boxes) structures are presented with 0.25μm 1.8 V CMOS (complementary metal oxide semiconductor) standard cell library. The comparisons and trade-offs among area, security, and power are explored. The experimental results show that Galois field composite S-Boxes have smaller size and highest security but consume considerably more power, whereas decoder-switch-encoder S-Boxes have the best power characteristics with disadvantages in terms of size and security. The combination of these two type S-Boxes instead of homogeneous S-Boxes in AES circuit will lead to optimal schemes. The technique of latch-dividing data path is analyzed, and the quantitative simulation results demonstrate that this approach diminishes the glitches effectively at a very low hardware cost.展开更多
基金supported by the National Natural Science Foundation of China(6060309260975042)
文摘Being as unique nonlinear components of block ciphers,substitution boxes(S-boxes) directly affect the security of the cryptographic systems.It is important and difficult to design cryptographically strong S-boxes that simultaneously meet with multiple cryptographic criteria such as bijection,non-linearity,strict avalanche criterion(SAC),bits independence criterion(BIC),differential probability(DP) and linear probability(LP).To deal with this problem,a chaotic S-box based on the artificial bee colony algorithm(CSABC) is designed.It uses the S-boxes generated by the six-dimensional compound hyperchaotic map as the initial individuals and employs ABC to improve their performance.In addition,it considers the nonlinearity and differential uniformity as the fitness functions.A series of experiments have been conducted to compare multiple cryptographic criteria of this algorithm with other algorithms.Simulation results show that the new algorithm has cryptographically strong S-box while meeting multiple cryptographic criteria.
基金the "863" High Technology Research and Development Program of China (2006AA01Z226)the Scientific Research Foundation of Huazhong University of Science and Technology (2006Z011B)the Program for New Century Excellent Talents in University (NCET-07-0328).
文摘Ubiquitous computing must incorporate a certain level of security. For the severely resource constrained applications, the energy-efficient and small size cryptography algorithm implementation is a critical problem. Hardware implementations of the advanced encryption standard (AES) for authentication and encryption are presented. An energy consumption variable is derived to evaluate low-power design strategies for battery-powered devices. It proves that compact AES architectures fail to optimize the AES hardware energy, whereas reducing invalid switching activities and implementing power-optimized sub-modules are the reasonable methods. Implementations of different substitution box (S-Boxes) structures are presented with 0.25μm 1.8 V CMOS (complementary metal oxide semiconductor) standard cell library. The comparisons and trade-offs among area, security, and power are explored. The experimental results show that Galois field composite S-Boxes have smaller size and highest security but consume considerably more power, whereas decoder-switch-encoder S-Boxes have the best power characteristics with disadvantages in terms of size and security. The combination of these two type S-Boxes instead of homogeneous S-Boxes in AES circuit will lead to optimal schemes. The technique of latch-dividing data path is analyzed, and the quantitative simulation results demonstrate that this approach diminishes the glitches effectively at a very low hardware cost.