High-temperature stealth is vital for enhancing the concealment,survivability,and longevity of critical assets.However,achieving stealth across multiple infrared bands—particularly in the short-wave infrared(SWIR)ban...High-temperature stealth is vital for enhancing the concealment,survivability,and longevity of critical assets.However,achieving stealth across multiple infrared bands—particularly in the short-wave infrared(SWIR)band—along with microwave stealth and efficient thermal management at high temperatures,remains a significant challenge.Here,we propose a strategy that integrates an IR-selective emitter(Mo/Si multilayer films)and a microwave metasurface(TiB2–Al2O3–TiB2)to enable multi-infrared band stealth,encompassing mid-wave infrared(MWIR),long-wave infrared(LWIR),and SWIR bands,and microwave(X-band)stealth at 700℃,with simultaneous radiative cooling in non-atmospheric window(5–8μm).At 700℃,the device exhibits low emissivity of 0.38/0.44/0.60 in the MWIR/LWIR/SWIR bands,reflection loss below−3 dB in the X-band(9.6–12 GHz),and high emissivity of 0.82 in 5–8μm range—corresponding to a cooling power of 9.57 kW m^(−2).Moreover,under an input power of 17.3 kW m^(−2)—equivalent to the aerodynamic heating at Mach 2.2—the device demonstrates a temperature reduction of 72.4℃ compared to a conventional low-emissivity molybdenum surface at high temperatures.This work provides comprehensive guidance on high-temperature stealth design,with far-reaching implications for multispectral information processing and thermal management in extreme high-temperature environments.展开更多
Thermal management system is highly desirable to guarantee the performance and thermal safety of lithium-ion batteries,but it reduces the energy density of battery modules and even is unable to provide highly effectiv...Thermal management system is highly desirable to guarantee the performance and thermal safety of lithium-ion batteries,but it reduces the energy density of battery modules and even is unable to provide highly effective protection.Here,a thermal management function integrated material is presented based on high-temperature resistant aerogel and phase change material and is applied at both charge–discharge process and thermal runaway condition.In this sandwich structure Paraffin@SiC nanowire/Aerogel sheet (denoted as PA@SAS) system,SiC nanowires endow the middle aerogel sheet (SAS) a dual nano-network structure.The enhanced mechanical properties of SAS were studied by compressive tests and dynamic mechanical analysis.Besides,the thermal conductivity of SAS at 600°C is only 0.042 W/(m K).The surface phase change material layers facilitate temperature uniformity of batteries (surface temperature difference less than 1.82°C) through latent heat.Moreover,a large-format battery module with four 58 Ah LiNi0.5Co0.2Mn0.3O2LIBs was assembled.PA@SAS successfully prevents thermal runaway propagation,yielding a temperature gap of 602°C through the 2 mm-thick cross section.PA@SAS also exhibits excellent performance in other safety issues such as temperature rise rate,flame heat flux,etc.The lightweight property and effective insulation performance achieves significant safety enhancement with mass and volume energy density reduction of only 0.79%and 5.4%,respectively.The originality of the present research stems from the micro and macro structure design of the proposed thermal management material and the combination of intrinsic advantages of every component.This work provides a reliable design of achieving the integration of thermal management functions into an aerogel composite and improves the thermal safety of lithium-ion batteries.展开更多
Climate change is the most severe ecological challenge faced by the world today.Forests,the dominant component of terrestrial ecosystems,play a critical role in mitigating climate change due to their powerful carbon s...Climate change is the most severe ecological challenge faced by the world today.Forests,the dominant component of terrestrial ecosystems,play a critical role in mitigating climate change due to their powerful carbon sequestration capabilities.Meanwhile,climate change has also become a major factor affecting the sustainable management of forest ecosystems.Climate-Smart Forestry(CSF)is an emerging concept in sustainable forest management.By utilizing advanced technologies,such as information technology and artificial intelligence,CSF aims to develop innovative and proactive forest management methods and decision-making systems to address the challenges of climate change.CSF aims to enhance forest ecosystem resilience(i.e.,maintain a condition where,even when the state of the ecosystem changes,the ecosystem functions do not deteriorate)through climate change adaptation,improve the mitigation capabilities of forest ecosystems to climate change,maintain high,stable,and sustainable forest productivity and ecosystem services,and ultimately achieve harmonious development between humans and nature.This concept paper:(1)discusses the emergence and development of CSF,which integrates Ecological Forestry,Carbon Forestry,and Smart Forestry,and proposes the concept of CSF;(2)analyzes the goals of CSF in improving forest ecosystem stability,enhancing forest ecosystem carbon sequestration capacity,and advocating the application and development of new technologies in CSF,including artificial intelligence,robotics,Light Detection and Ranging,and forest digital twin;(3)presents the latest practices of CSF based on prior research on forest structure and function using new generation information technologies at Qingyuan Forest,China.From these practices and reflections,we suggested the development direction of CSF,including the key research topics and technological advancement.展开更多
BACKGROUND: Targeted temperature management(TTM) is a common therapeutic intervention, yet its cost-effectiveness remains uncertain. This study aimed to evaluate the real-world cost-effectiveness of TTM compared with ...BACKGROUND: Targeted temperature management(TTM) is a common therapeutic intervention, yet its cost-effectiveness remains uncertain. This study aimed to evaluate the real-world cost-effectiveness of TTM compared with that of conventional care in adult out-of-hospital cardiac arrest(OHCA) survivors using clinical patient-level data.METHODS: We conducted a retrospective cohort study at an academic medical center in the USA to assess the cost-effectiveness of TTM in adult non-traumatic OHCA survivors between 1 January, 2019 and 30 June, 2023. The primary outcome was survival to hospital discharge. Incremental cost-effectiveness ratios(ICERs) were calculated and compared with various decision makers' willingness to pay. Cost-effectiveness acceptability curves were utilized to evaluate the economic attractiveness of TTM. Uncertainty about the incremental cost and effect was explored with a 95% confidence ellipse.RESULTS: Among 925 non-traumatic OHCA survivors, only 30(3%) received TTM. After adjusting for potential confounders, the TTM group did not demonstrate a significantly lower cost(delta cost-$5,141, 95% confidence interval [95% CI]: $-35,347 to $25,065, P=0.79) and higher survival to hospital discharge(delta effect 6%, 95% CI:-11% to 23%, P=0.41). Additionally, a 95% confidence ellipse indicated uncertainty reflected by evidence that the true value of the ICER could be in any of the quadrants of the cost-effectiveness plane.CONCLUSION: Although TTM did not demonstrate a clear survival benefit in this study, its potential cost-effectiveness warrants further investigation with larger sample sizes. These findings highlight the need for additional research to optimize TTM use in OHCA care and inform resource allocation decisions.展开更多
Radiative cooling fabric creates a thermally comfortable environment without energy input,providing a sustainable approach to personal thermal management.However,most currently reported fabrics mainly focus on outdoor...Radiative cooling fabric creates a thermally comfortable environment without energy input,providing a sustainable approach to personal thermal management.However,most currently reported fabrics mainly focus on outdoor cooling,ignoring to achieve simultaneous cooling both indoors and outdoors,thereby weakening the overall cooling performance.Herein,a full-scale structure fabric with selective emission properties is constructed for simultaneous indoor and outdoor cooling.The fabric achieves 94%reflectance performance in the sunlight band(0.3–2.5μm)and 6%in the mid-infrared band(2.5–25μm),effectively minimizing heat absorption and radiation release obstruction.It also demonstrates 81%radiative emission performance in the atmospheric window band(8–13μm)and 25%radiative transmission performance in the mid-infrared band(2.5–25μm),providing 60 and 26 W m−2 net cooling power outdoors and indoors.In practical applications,the fabric achieves excellent indoor and outdoor human cooling,with temperatures 1.4–5.5℃ lower than typical polydimethylsiloxane film.This work proposes a novel design for the advanced radiative cooling fabric,offering significant potential to realize sustainable personal thermal management.展开更多
Plenter forests,also known as uneven-aged or continuous cover forests enhance forest resilience and resistance against disturbances compared to even-aged forests.They are considered as an adaptation option to mitigate...Plenter forests,also known as uneven-aged or continuous cover forests enhance forest resilience and resistance against disturbances compared to even-aged forests.They are considered as an adaptation option to mitigate climate change effects.In this study,we present a conceptual approach to determine the potentially suitable area for plenter forest management within central European mixed species forests and apply our approach to the case study area in Styria,the south-eastern Province of Austria.The concept is based on ecological and technicaleconomic constraints and considers expected future climate conditions and its impact on plenter forest management.For each 1 ha forest pixel,we assess the ecological conditions for plenter forest management according to the autecological growth conditions of silver fir,and at least one additional shade tolerant tree species.The technical-economic constraints are defined by slope(≤30%)and distance to the next forest road(≤100 m)to ensure cost-efficient harvesting.The results show that under current climate conditions 28.1%or 305,349 ha of the forests in Styria are potentially suitable for plenter forest management.For the years 2071–2100 and under the climate change scenario RCP 4.5,the potential area decreases to 286,098 ha(26.3%of the total forest area)and for the scenario RCP 8.5 to 208,421 ha(19.1%of the total forest area).The main reason for these changes is the unfavourable growing conditions for silver fir in the lowlands,while in the higher elevations silver fir is likely to expand.Our results may serve forest managers to identify areas suitable for plenter forests and assist in the transformation of even-aged pure forests to uneven-aged forests to increase resistance,resilience,and biodiversity under climate change.展开更多
5G technology has endowed mobile communication terminals with features such as ultrawideband access,low latency,and high reliability transmission,which can complete the network access and interconnection of a large nu...5G technology has endowed mobile communication terminals with features such as ultrawideband access,low latency,and high reliability transmission,which can complete the network access and interconnection of a large number of devices,thus realizing richer application scenarios and constructing 5G-enabled vehicular networks.However,due to the vulnerability of wireless communication,vehicle privacy and communication security have become the key problems to be solved in vehicular networks.Moreover,the large-scale communication in the vehicular networks also makes the higher communication efficiency an inevitable requirement.In order to achieve efficient and secure communication while protecting vehicle privacy,this paper proposes a lightweight key agreement and key update scheme for 5G vehicular networks based on blockchain.Firstly,the key agreement is accomplished using certificateless public key cryptography,and based on the aggregate signature and the cooperation between the vehicle and the trusted authority,an efficient key updating method is proposed,which reduces the overhead and protects the privacy of the vehicle while ensuring the communication security.Secondly,by introducing blockchain and using smart contracts to load the vehicle public key table for key management,this meets the requirements of vehicle traceability and can dynamically track and revoke misbehaving vehicles.Finally,the formal security proof under the eck security model and the informal security analysis is conducted,it turns out that our scheme is more secure than other authentication schemes in the vehicular networks.Performance analysis shows that our scheme has lower overhead than existing schemes in terms of communication and computation.展开更多
With the deployment of ultra-dense low earth orbit(LEO)satellite constellations,LEO satellite access network(LEO-SAN)is envisioned to achieve global Internet coverage.Meanwhile,the civil aviation communications have i...With the deployment of ultra-dense low earth orbit(LEO)satellite constellations,LEO satellite access network(LEO-SAN)is envisioned to achieve global Internet coverage.Meanwhile,the civil aviation communications have increased dramatically,especially for providing airborne Internet services.However,due to dynamic service demands and onboard LEO resources over time and space,it poses huge challenges in satellite-aircraft access and service management in ultra-dense LEO satellite networks(UDLSN).In this paper,we propose a deep reinforcement learning-based approach for ultra-dense LEO satellite-aircraft access and service management.Firstly,we develop an airborne Internet architecture based on UDLSN and design a management mechanism including medium earth orbit satellites to guarantee lightweight management.Secondly,considering latency-sensitive and latency-tolerant services,we formulate the problem of satellite-aircraft access and service management for civil aviation to ensure service continuity.Finally,we propose a proximal policy optimization-based access and service management algorithm to solve the formulated problem.Simulation results demonstrate the convergence and effectiveness of the proposed algorithm with satisfying the service continuity when applying to the UDLSN.展开更多
Forest ecosystems are important for biodiversity conservation and human societies,but are under pressure due to climate change and human interventions.This applies to natural forests as well as tree plantations.The la...Forest ecosystems are important for biodiversity conservation and human societies,but are under pressure due to climate change and human interventions.This applies to natural forests as well as tree plantations.The latter are globally widespread and therefore gaining increasing importance for biodiversity conservation.However,even after dieback due to increasing disturbance frequencies,such plantations are primarily managed for economic returns,leading to growing conflicts among stakeholders.In particular,the impact of forest management on biodiversity is being discussed.This study investigates the effects of five management approaches in a landscape severely affected by spruce(Picea abies L.)dieback on beetle diversity,conservation,and community composition.We considered direct effects of management and indirect effects of environmental parameters separately in ground-dwelling and flight-active beetles.Beetle diversity was strongly affected by forest management,with nonintervention deadwood stands being most beneficial for beetles.In addition,we show indirect effects of environmental factors.In general,parameters related to salvage logging(e.g.open canopies,tree stumps)influenced beetle diversity and conservation negatively,while positive effects were found for soil nutrient availability and plant species richness.Community composition differed strongly among management categories and indicated a lack of landscape connectivity for open habitat species,as we found only low proportions of such species even on salvage-logged sites.We propose a mixture of management approaches after bark beetle outbreaks,including a substantial proportion of non-intervention deadwood stands,to increase landscape heterogeneity and connectivity.This may increase overall biodiversity while addressing the concerns of both forestry and species conservation.展开更多
On October 18,2017,the 19th National Congress Report called for the implementation of the Healthy China Strategy.The development of biomedical data plays a pivotal role in advancing this strategy.Since the 18th Nation...On October 18,2017,the 19th National Congress Report called for the implementation of the Healthy China Strategy.The development of biomedical data plays a pivotal role in advancing this strategy.Since the 18th National Congress of the Communist Party of China,China has vigorously promoted the integration and implementation of the Healthy China and Digital China strategies.The National Health Commission has prioritized the development of health and medical big data,issuing policies to promote standardized applica-tions and foster innovation in"Internet+Healthcare."Biomedical data has significantly contributed to preci-sion medicine,personalized health management,drug development,disease diagnosis,public health monitor-ing,and epidemic prediction capabilities.展开更多
All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management...All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management for cooling or heating fails to self-regulate the temperature in dynamic seasonal temperature condition.Herein,inspired by the dual-temperature regulation function of the fur color changes on the backs and abdomens of penguins,a smart thermal management composite hydrogel(PNA@H-PM Gel)system was subtly created though an"on-demand"dual-layer structure design strategy.The PNA@H-PM Gel system features synchronous solar and thermal radiation modulation as well as tunable phase transition temperatures to meet the variable seasonal thermal requirements and energy-saving demands via self-adaptive radiative cooling and solar heating regulation.Furthermore,this system demonstrates superb modulations of both the solar reflectance(ΔR=0.74)and thermal emissivity(ΔE=0.52)in response to ambient temperature changes,highlighting efficient temperature regulation with average radiative cooling and solar heating effects of 9.6℃in summer and 6.1℃in winter,respectively.Moreover,compared to standard building baselines,the PNA@H-PM Gel presents a more substantial energy-saving cooling/heating potentials for energy-efficient buildings across various regions and climates.This novel solution,inspired by penguins in the real world,will offer a fresh approach for producing intelligent,energy-saving thermal management materials,and serve for temperature regulation under dynamic climate conditions and even throughout all seasons.展开更多
Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building hea...Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building heating,ventilation,and air-conditioning systems.In recent years,there has been a surge in advancements in personal thermal management(PTM),aiming to regulate heat and moisture transfer within our immediate surroundings,clothing,and skin.The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering.An emerging research area in PTM is personal radiative thermal management(PRTM),which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation.However,it is less taken into account in traditional textiles,and there currently lies a gap in our knowledge and understanding of PRTM.In this review,we aim to present a thorough analysis of advanced textile materials and technologies for PRTM.Specifically,we will introduce and discuss the underlying radiation heat transfer mechanisms,fabrication methods of textiles,and various indoor/outdoor applications in light of their different regulation functionalities,including radiative cooling,radiative heating,and dual-mode thermoregulation.Furthermore,we will shine a light on the current hurdles,propose potential strategies,and delve into future technology trends for PRTM with an emphasis on functionalities and applications.展开更多
In mega-constellation Communication Systems, efficient routing algorithms and data transmission technologies are employed to ensure fast and reliable data transfer. However, the limited computational resources of sate...In mega-constellation Communication Systems, efficient routing algorithms and data transmission technologies are employed to ensure fast and reliable data transfer. However, the limited computational resources of satellites necessitate the use of edge computing to enhance secure communication.While edge computing reduces the burden on cloud computing, it introduces security and reliability challenges in open satellite communication channels. To address these challenges, we propose a blockchain architecture specifically designed for edge computing in mega-constellation communication systems. This architecture narrows down the consensus scope of the blockchain to meet the requirements of edge computing while ensuring comprehensive log storage across the network. Additionally, we introduce a reputation management mechanism for nodes within the blockchain, evaluating their trustworthiness, workload, and efficiency. Nodes with higher reputation scores are selected to participate in tasks and are appropriately incentivized. Simulation results demonstrate that our approach achieves a task result reliability of 95% while improving computational speed.展开更多
Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network act...Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.展开更多
Chronic diabetic wounds confront a significant medical challenge because of increasing prevalence and difficult-healing circumstances.It is vital to develop multifunctional hydrogel dressings,with well-designed morpho...Chronic diabetic wounds confront a significant medical challenge because of increasing prevalence and difficult-healing circumstances.It is vital to develop multifunctional hydrogel dressings,with well-designed morphology and structure to enhance flexibility and effectiveness in wound management.To achieve these,we propose a self-healing hydrogel dressing based on structural color microspheres for wound management.The microsphere comprised a photothermal-responsive inverse opal framework,which was constructed by hyaluronic acid methacryloyl,silk fibroin methacryloyl and black phosphorus quantum dots(BPQDs),and was further re-filled with a dynamic hydrogel.The dynamic hydrogel filler was formed by Knoevenagel condensation reaction between cyanoacetate and benzaldehyde-functionalized dextran(DEX-CA and DEX-BA).Notably,the composite microspheres can be applied arbitrarily,and they can adhere together upon near-infrared irradiation by leveraging the BPQDs-mediated photothermal effect and the thermoreversible stiffness change of dynamic hydrogel.Additionally,eumenitin and vascular endothelial growth factor were co-loaded in the microspheres and their release behavior can be regulated by the same mechanism.Moreover,effective monitoring of the drug release process can be achieved through visual color variations.The microsphere system has demonstrated desired capabilities of controllable drug release and efficient wound management.These characteristics suggest broad prospects for the proposed composite microspheres in clinical applications.展开更多
Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan...Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.展开更多
Forest hydrology,the study of water dynamics within forested catchments,is crucial for understanding the intricate relationship between forest cover and water balances across different scales,from ecosystems to landsc...Forest hydrology,the study of water dynamics within forested catchments,is crucial for understanding the intricate relationship between forest cover and water balances across different scales,from ecosystems to landscapes,or from catchment watersheds.The intensified global changes in climate,land use and cover,and pollution that occurred over the past century have brought about adverse impacts on forests and their services in water regulation,signifying the importance of forest hydrological research as a re-emerging topic of scientific interest.This article reviews the literature on recent advances in forest hydrological research,intending to identify leading countries,institutions,and researchers actively engaged in this field,as well as highlighting research hotspots for future exploration.Through a systematic analysis using VOSviewer,drawing from 17,006 articles retrieved from the Web of Science Core Collection spanning 2000–2022,we employed scientometric methods to assess research productivity,identify emerging topics,and analyze academic development.The findings reveal a consistent growth in forest hydrological research over the past two decades,with the United States,Charles T.Driscoll,and the Chinese Academy of Sciences emerging as the most productive country,author,and institution,respectively.The Journal of Hydrology emerges as the most co-cited journal.Analysis of keyword co-occurrence and co-cited references highlights key research areas,including climate change,management strategies,runoff-erosion dynamics,vegetation cover changes,paired catchment experiments,water quality,aquatic biodiversity,forest fire dynamics and hydrological modeling.Based on these findings,our study advocates for an integrated approach to future research,emphasizing the collection of data from diverse sources,utilization of varied methodologies,and collaboration across disciplines and institutions.This holistic strategy is essential for developing sustainable approaches to forested watershed planning and management.Ultimately,our study provides valuable insights for researchers,practitioners,and policymakers,guiding future research directions towards forest hydrological research and applications.展开更多
Broad area quantum cascade lasers(BA QCLs)have significant applications in many areas,but suffer from demanding pulse operating conditions and poor beam quality due to heat accumulation and generation of high order mo...Broad area quantum cascade lasers(BA QCLs)have significant applications in many areas,but suffer from demanding pulse operating conditions and poor beam quality due to heat accumulation and generation of high order modes.A structure of mini-array is adopted to improve the heat dissipation capacity and beam quality of BA QCLs.The active region is etched to form a multi-emitter and the channels are filled with In P:Fe,which acts as a lateral heat dissipation channel to improve the lateral heat dissipation efficiency.A device withλ~4.8μm,a peak output power of 122 W at 1.2%duty cycle with a pulse of 1.5μs is obtained in room temperature,with far-field single-lobed distribution.This result allows BA QCLs to obtain high peak power at wider pump pulse widths and higher duty cycle conditions,promotes the application of the mid-infrared laser operating in pulsed mode in th e field of standoff photoacoustic chemical detection,space optical communication,and so on.展开更多
Biomedical data is surging due to technological innovations and integration of multidisciplinary data,posing challenges to data management.This article summarizes the policies,data collection efforts,platform construc...Biomedical data is surging due to technological innovations and integration of multidisciplinary data,posing challenges to data management.This article summarizes the policies,data collection efforts,platform construction,and applications of biomedical data in China,aiming to identify key issues and needs,enhance the capacity-building of platform construction,unleash the value of data,and leverage the advantages of China's vast amount of data.展开更多
基金supported by National Key Research and Development Program of China(Grant No.2024YFA1210500)National Natural Science Foundation of China(Grant Nos.U2341225 and 62375242)+1 种基金Sichuan Science and Technology Program(2025YFHZ0297)Postdoctoral Fellowship Program of CPSF(Grant No.GZB20240647).
文摘High-temperature stealth is vital for enhancing the concealment,survivability,and longevity of critical assets.However,achieving stealth across multiple infrared bands—particularly in the short-wave infrared(SWIR)band—along with microwave stealth and efficient thermal management at high temperatures,remains a significant challenge.Here,we propose a strategy that integrates an IR-selective emitter(Mo/Si multilayer films)and a microwave metasurface(TiB2–Al2O3–TiB2)to enable multi-infrared band stealth,encompassing mid-wave infrared(MWIR),long-wave infrared(LWIR),and SWIR bands,and microwave(X-band)stealth at 700℃,with simultaneous radiative cooling in non-atmospheric window(5–8μm).At 700℃,the device exhibits low emissivity of 0.38/0.44/0.60 in the MWIR/LWIR/SWIR bands,reflection loss below−3 dB in the X-band(9.6–12 GHz),and high emissivity of 0.82 in 5–8μm range—corresponding to a cooling power of 9.57 kW m^(−2).Moreover,under an input power of 17.3 kW m^(−2)—equivalent to the aerodynamic heating at Mach 2.2—the device demonstrates a temperature reduction of 72.4℃ compared to a conventional low-emissivity molybdenum surface at high temperatures.This work provides comprehensive guidance on high-temperature stealth design,with far-reaching implications for multispectral information processing and thermal management in extreme high-temperature environments.
基金Collaborative Innovation University Project of Anhui Province (GXXT-2022-018)National Natural Science Foundation of China (52374238 and 52074253)+3 种基金Natural Science Foundation of Anhui Province (2108085J28)Taishan Industrial Leading Talent Project (2019TSCYCX-27)Major Science and Technology Projects of Anhui Province(202103a05020011)Youth Innovation Promotion Association(CX2320007001)。
文摘Thermal management system is highly desirable to guarantee the performance and thermal safety of lithium-ion batteries,but it reduces the energy density of battery modules and even is unable to provide highly effective protection.Here,a thermal management function integrated material is presented based on high-temperature resistant aerogel and phase change material and is applied at both charge–discharge process and thermal runaway condition.In this sandwich structure Paraffin@SiC nanowire/Aerogel sheet (denoted as PA@SAS) system,SiC nanowires endow the middle aerogel sheet (SAS) a dual nano-network structure.The enhanced mechanical properties of SAS were studied by compressive tests and dynamic mechanical analysis.Besides,the thermal conductivity of SAS at 600°C is only 0.042 W/(m K).The surface phase change material layers facilitate temperature uniformity of batteries (surface temperature difference less than 1.82°C) through latent heat.Moreover,a large-format battery module with four 58 Ah LiNi0.5Co0.2Mn0.3O2LIBs was assembled.PA@SAS successfully prevents thermal runaway propagation,yielding a temperature gap of 602°C through the 2 mm-thick cross section.PA@SAS also exhibits excellent performance in other safety issues such as temperature rise rate,flame heat flux,etc.The lightweight property and effective insulation performance achieves significant safety enhancement with mass and volume energy density reduction of only 0.79%and 5.4%,respectively.The originality of the present research stems from the micro and macro structure design of the proposed thermal management material and the combination of intrinsic advantages of every component.This work provides a reliable design of achieving the integration of thermal management functions into an aerogel composite and improves the thermal safety of lithium-ion batteries.
基金financially supported by the National Natural Science Foundation of China(32192435)the Application and Demonstration Project of Network Security and Informatization Technology,Chinese Academy of Sciences(CAS-WX2022SF-0101)+1 种基金the Liaoning Provincial Key Research and Development Program(2023021230-JH2/1018)the Youth Innovation Promotion Association of CAS(2023205).
文摘Climate change is the most severe ecological challenge faced by the world today.Forests,the dominant component of terrestrial ecosystems,play a critical role in mitigating climate change due to their powerful carbon sequestration capabilities.Meanwhile,climate change has also become a major factor affecting the sustainable management of forest ecosystems.Climate-Smart Forestry(CSF)is an emerging concept in sustainable forest management.By utilizing advanced technologies,such as information technology and artificial intelligence,CSF aims to develop innovative and proactive forest management methods and decision-making systems to address the challenges of climate change.CSF aims to enhance forest ecosystem resilience(i.e.,maintain a condition where,even when the state of the ecosystem changes,the ecosystem functions do not deteriorate)through climate change adaptation,improve the mitigation capabilities of forest ecosystems to climate change,maintain high,stable,and sustainable forest productivity and ecosystem services,and ultimately achieve harmonious development between humans and nature.This concept paper:(1)discusses the emergence and development of CSF,which integrates Ecological Forestry,Carbon Forestry,and Smart Forestry,and proposes the concept of CSF;(2)analyzes the goals of CSF in improving forest ecosystem stability,enhancing forest ecosystem carbon sequestration capacity,and advocating the application and development of new technologies in CSF,including artificial intelligence,robotics,Light Detection and Ranging,and forest digital twin;(3)presents the latest practices of CSF based on prior research on forest structure and function using new generation information technologies at Qingyuan Forest,China.From these practices and reflections,we suggested the development direction of CSF,including the key research topics and technological advancement.
基金supported by Faculty of MedicineChiang Mai University+2 种基金supported by the National Center for Advancing Translational SciencesNational Institutes of Healththrough grant number UL1 TR001860. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH。
文摘BACKGROUND: Targeted temperature management(TTM) is a common therapeutic intervention, yet its cost-effectiveness remains uncertain. This study aimed to evaluate the real-world cost-effectiveness of TTM compared with that of conventional care in adult out-of-hospital cardiac arrest(OHCA) survivors using clinical patient-level data.METHODS: We conducted a retrospective cohort study at an academic medical center in the USA to assess the cost-effectiveness of TTM in adult non-traumatic OHCA survivors between 1 January, 2019 and 30 June, 2023. The primary outcome was survival to hospital discharge. Incremental cost-effectiveness ratios(ICERs) were calculated and compared with various decision makers' willingness to pay. Cost-effectiveness acceptability curves were utilized to evaluate the economic attractiveness of TTM. Uncertainty about the incremental cost and effect was explored with a 95% confidence ellipse.RESULTS: Among 925 non-traumatic OHCA survivors, only 30(3%) received TTM. After adjusting for potential confounders, the TTM group did not demonstrate a significantly lower cost(delta cost-$5,141, 95% confidence interval [95% CI]: $-35,347 to $25,065, P=0.79) and higher survival to hospital discharge(delta effect 6%, 95% CI:-11% to 23%, P=0.41). Additionally, a 95% confidence ellipse indicated uncertainty reflected by evidence that the true value of the ICER could be in any of the quadrants of the cost-effectiveness plane.CONCLUSION: Although TTM did not demonstrate a clear survival benefit in this study, its potential cost-effectiveness warrants further investigation with larger sample sizes. These findings highlight the need for additional research to optimize TTM use in OHCA care and inform resource allocation decisions.
基金financially supported by Heilongjiang Postdoctoral Fund(Grant No.LBH-Z24057)Outstanding Master’s and Doctoral Thesis of Longjiang in the New Era(Grant No.LJYXL2023-076).
文摘Radiative cooling fabric creates a thermally comfortable environment without energy input,providing a sustainable approach to personal thermal management.However,most currently reported fabrics mainly focus on outdoor cooling,ignoring to achieve simultaneous cooling both indoors and outdoors,thereby weakening the overall cooling performance.Herein,a full-scale structure fabric with selective emission properties is constructed for simultaneous indoor and outdoor cooling.The fabric achieves 94%reflectance performance in the sunlight band(0.3–2.5μm)and 6%in the mid-infrared band(2.5–25μm),effectively minimizing heat absorption and radiation release obstruction.It also demonstrates 81%radiative emission performance in the atmospheric window band(8–13μm)and 25%radiative transmission performance in the mid-infrared band(2.5–25μm),providing 60 and 26 W m−2 net cooling power outdoors and indoors.In practical applications,the fabric achieves excellent indoor and outdoor human cooling,with temperatures 1.4–5.5℃ lower than typical polydimethylsiloxane film.This work proposes a novel design for the advanced radiative cooling fabric,offering significant potential to realize sustainable personal thermal management.
基金part of the project“Areas of Forest Innovation Climate Smart Forestry”(project nr.101726),WP Modelling Plenter Forest vs.Even-aged Forest,funded by the Austrian Ministry of Agriculture,Forestry,Regions and Water Managementfunded by the province of Styria(Austria),the Austrian Federal Ministry of Agriculture,Forestry,Regions and Water Management and the European Union via the projects“Waldtypisierung Steiermark-FORSITE”(LE14-20)and“FORSITEⅡ-Investigation of the ecological base line information for a dynamic forest site classification in Upper Austria,Lower Austria and Burgenland”(101746)financial support came from BOKU University。
文摘Plenter forests,also known as uneven-aged or continuous cover forests enhance forest resilience and resistance against disturbances compared to even-aged forests.They are considered as an adaptation option to mitigate climate change effects.In this study,we present a conceptual approach to determine the potentially suitable area for plenter forest management within central European mixed species forests and apply our approach to the case study area in Styria,the south-eastern Province of Austria.The concept is based on ecological and technicaleconomic constraints and considers expected future climate conditions and its impact on plenter forest management.For each 1 ha forest pixel,we assess the ecological conditions for plenter forest management according to the autecological growth conditions of silver fir,and at least one additional shade tolerant tree species.The technical-economic constraints are defined by slope(≤30%)and distance to the next forest road(≤100 m)to ensure cost-efficient harvesting.The results show that under current climate conditions 28.1%or 305,349 ha of the forests in Styria are potentially suitable for plenter forest management.For the years 2071–2100 and under the climate change scenario RCP 4.5,the potential area decreases to 286,098 ha(26.3%of the total forest area)and for the scenario RCP 8.5 to 208,421 ha(19.1%of the total forest area).The main reason for these changes is the unfavourable growing conditions for silver fir in the lowlands,while in the higher elevations silver fir is likely to expand.Our results may serve forest managers to identify areas suitable for plenter forests and assist in the transformation of even-aged pure forests to uneven-aged forests to increase resistance,resilience,and biodiversity under climate change.
基金supported in part by the National Natural Science Foundation of China under Grant 61941113,Grant 61971033,and Grant 61671057by the Henan Provincial Department of Science and Technology Project(No.212102210408)by the Henan Provincial Key Scientific Research Project(No.22A520041).
文摘5G technology has endowed mobile communication terminals with features such as ultrawideband access,low latency,and high reliability transmission,which can complete the network access and interconnection of a large number of devices,thus realizing richer application scenarios and constructing 5G-enabled vehicular networks.However,due to the vulnerability of wireless communication,vehicle privacy and communication security have become the key problems to be solved in vehicular networks.Moreover,the large-scale communication in the vehicular networks also makes the higher communication efficiency an inevitable requirement.In order to achieve efficient and secure communication while protecting vehicle privacy,this paper proposes a lightweight key agreement and key update scheme for 5G vehicular networks based on blockchain.Firstly,the key agreement is accomplished using certificateless public key cryptography,and based on the aggregate signature and the cooperation between the vehicle and the trusted authority,an efficient key updating method is proposed,which reduces the overhead and protects the privacy of the vehicle while ensuring the communication security.Secondly,by introducing blockchain and using smart contracts to load the vehicle public key table for key management,this meets the requirements of vehicle traceability and can dynamically track and revoke misbehaving vehicles.Finally,the formal security proof under the eck security model and the informal security analysis is conducted,it turns out that our scheme is more secure than other authentication schemes in the vehicular networks.Performance analysis shows that our scheme has lower overhead than existing schemes in terms of communication and computation.
基金supported in part by the National Key R&D Program of China under Grant 2020YFB1806104in part by Innovation and Entrepreneurship of Jiangsu Province High-level Talent Program+1 种基金in part by Natural Sciences and Engineering Research Council of Canada (NSERC)the support from Huawei
文摘With the deployment of ultra-dense low earth orbit(LEO)satellite constellations,LEO satellite access network(LEO-SAN)is envisioned to achieve global Internet coverage.Meanwhile,the civil aviation communications have increased dramatically,especially for providing airborne Internet services.However,due to dynamic service demands and onboard LEO resources over time and space,it poses huge challenges in satellite-aircraft access and service management in ultra-dense LEO satellite networks(UDLSN).In this paper,we propose a deep reinforcement learning-based approach for ultra-dense LEO satellite-aircraft access and service management.Firstly,we develop an airborne Internet architecture based on UDLSN and design a management mechanism including medium earth orbit satellites to guarantee lightweight management.Secondly,considering latency-sensitive and latency-tolerant services,we formulate the problem of satellite-aircraft access and service management for civil aviation to ensure service continuity.Finally,we propose a proximal policy optimization-based access and service management algorithm to solve the formulated problem.Simulation results demonstrate the convergence and effectiveness of the proposed algorithm with satisfying the service continuity when applying to the UDLSN.
基金supported by Forschungsanstalt für Waldo kologie und Forstwirtschaft(FAWF)of Landesforsten Rheinland-Pfalz(FF 5.3-01-2021)。
文摘Forest ecosystems are important for biodiversity conservation and human societies,but are under pressure due to climate change and human interventions.This applies to natural forests as well as tree plantations.The latter are globally widespread and therefore gaining increasing importance for biodiversity conservation.However,even after dieback due to increasing disturbance frequencies,such plantations are primarily managed for economic returns,leading to growing conflicts among stakeholders.In particular,the impact of forest management on biodiversity is being discussed.This study investigates the effects of five management approaches in a landscape severely affected by spruce(Picea abies L.)dieback on beetle diversity,conservation,and community composition.We considered direct effects of management and indirect effects of environmental parameters separately in ground-dwelling and flight-active beetles.Beetle diversity was strongly affected by forest management,with nonintervention deadwood stands being most beneficial for beetles.In addition,we show indirect effects of environmental factors.In general,parameters related to salvage logging(e.g.open canopies,tree stumps)influenced beetle diversity and conservation negatively,while positive effects were found for soil nutrient availability and plant species richness.Community composition differed strongly among management categories and indicated a lack of landscape connectivity for open habitat species,as we found only low proportions of such species even on salvage-logged sites.We propose a mixture of management approaches after bark beetle outbreaks,including a substantial proportion of non-intervention deadwood stands,to increase landscape heterogeneity and connectivity.This may increase overall biodiversity while addressing the concerns of both forestry and species conservation.
文摘On October 18,2017,the 19th National Congress Report called for the implementation of the Healthy China Strategy.The development of biomedical data plays a pivotal role in advancing this strategy.Since the 18th National Congress of the Communist Party of China,China has vigorously promoted the integration and implementation of the Healthy China and Digital China strategies.The National Health Commission has prioritized the development of health and medical big data,issuing policies to promote standardized applica-tions and foster innovation in"Internet+Healthcare."Biomedical data has significantly contributed to preci-sion medicine,personalized health management,drug development,disease diagnosis,public health monitor-ing,and epidemic prediction capabilities.
基金the funding and generous support of the National Natural Science Foundation of China(52103263,52271249)the Key Project of International Science&Technology Cooperation of Shaanxi Province(2023-GHZD-09)+5 种基金the Key Project of Science Foundation of Education Department of Shaanxi Province(22JY011)the Key Project of Scientific Research and Development of Shaanxi Province(2023GXLH-070)the Qinchuangyuan"Scientist+Engineer"Team of Shaanxi Province(2023KXJ-069)the Key Research and Development Program of Shaanxi(2023-YBGY-488)the Sci-tech Innovation Team of Shaanxi Province(2024RS-CXTD-46)the Key Research and Development Program of Shaanxi Province(2020ZDLGY13-11).
文摘All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management for cooling or heating fails to self-regulate the temperature in dynamic seasonal temperature condition.Herein,inspired by the dual-temperature regulation function of the fur color changes on the backs and abdomens of penguins,a smart thermal management composite hydrogel(PNA@H-PM Gel)system was subtly created though an"on-demand"dual-layer structure design strategy.The PNA@H-PM Gel system features synchronous solar and thermal radiation modulation as well as tunable phase transition temperatures to meet the variable seasonal thermal requirements and energy-saving demands via self-adaptive radiative cooling and solar heating regulation.Furthermore,this system demonstrates superb modulations of both the solar reflectance(ΔR=0.74)and thermal emissivity(ΔE=0.52)in response to ambient temperature changes,highlighting efficient temperature regulation with average radiative cooling and solar heating effects of 9.6℃in summer and 6.1℃in winter,respectively.Moreover,compared to standard building baselines,the PNA@H-PM Gel presents a more substantial energy-saving cooling/heating potentials for energy-efficient buildings across various regions and climates.This novel solution,inspired by penguins in the real world,will offer a fresh approach for producing intelligent,energy-saving thermal management materials,and serve for temperature regulation under dynamic climate conditions and even throughout all seasons.
基金support from the Research Grants Council of the Hong Kong Special Administrative Region,China(PolyU152052/21E)Green Tech Fund of Hong Kong(Project No.:GTF202220106)+1 种基金Innovation and Technology Fund of the Hong Kong Special Administrative Region,China(ITP/018/21TP)PolyU Endowed Young Scholars Scheme(Project No.:84CC).
文摘Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building heating,ventilation,and air-conditioning systems.In recent years,there has been a surge in advancements in personal thermal management(PTM),aiming to regulate heat and moisture transfer within our immediate surroundings,clothing,and skin.The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering.An emerging research area in PTM is personal radiative thermal management(PRTM),which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation.However,it is less taken into account in traditional textiles,and there currently lies a gap in our knowledge and understanding of PRTM.In this review,we aim to present a thorough analysis of advanced textile materials and technologies for PRTM.Specifically,we will introduce and discuss the underlying radiation heat transfer mechanisms,fabrication methods of textiles,and various indoor/outdoor applications in light of their different regulation functionalities,including radiative cooling,radiative heating,and dual-mode thermoregulation.Furthermore,we will shine a light on the current hurdles,propose potential strategies,and delve into future technology trends for PRTM with an emphasis on functionalities and applications.
基金supported in part by the National Natural Science Foundation of China under Grant No.U2268204,62172061 and 61871422National Key R&D Program of China under Grant No.2020YFB1711800 and 2020YFB1707900+2 种基金the Science and Technology Project of Sichuan Province under Grant No.2023ZHCG0014,2023ZHCG0011,2022YFG0155,2022YFG0157,2021GFW019,2021YFG0152,2021YFG0025,2020YFG0322Central Universities of Southwest Minzu University under Grant No.ZYN2022032,2023NYXXS034the State Scholarship Fund of the China Scholarship Council under Grant No.202008510081。
文摘In mega-constellation Communication Systems, efficient routing algorithms and data transmission technologies are employed to ensure fast and reliable data transfer. However, the limited computational resources of satellites necessitate the use of edge computing to enhance secure communication.While edge computing reduces the burden on cloud computing, it introduces security and reliability challenges in open satellite communication channels. To address these challenges, we propose a blockchain architecture specifically designed for edge computing in mega-constellation communication systems. This architecture narrows down the consensus scope of the blockchain to meet the requirements of edge computing while ensuring comprehensive log storage across the network. Additionally, we introduce a reputation management mechanism for nodes within the blockchain, evaluating their trustworthiness, workload, and efficiency. Nodes with higher reputation scores are selected to participate in tasks and are appropriately incentivized. Simulation results demonstrate that our approach achieves a task result reliability of 95% while improving computational speed.
基金Technology Development Program of Jilin Province(YDZJ202201ZYTS640)the National Key Research and Development Program of China(2022YFB4200400)funded by MOST+4 种基金the National Natural Science Foundation of China(52172048 and 52103221)Shandong Provincial Natural Science Foundation(ZR2021QB024 and ZR2021ZD06)Guangdong Basic and Applied Basic Research Foundation(2023A1515012323,2023A1515010943,and 2024A1515010023)the Qingdao New Energy Shandong Laboratory open Project(QNESL OP 202309)the Fundamental Research Funds of Shandong University.
文摘Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.
基金supported by the Ruijin Hospital Guangci Introducing Talent Projectfinancial support from National Natural Science Foundation of China(82372145)+4 种基金the Research Fellow(Grant No.353146)Research Project(347897)Solutions for Health Profile(336355)InFLAMES Flagship(337531)grants from Academy of Finlandthe Finland China Food and Health International Pilot Project funded by the Finnish Ministry of Education and Culture.
文摘Chronic diabetic wounds confront a significant medical challenge because of increasing prevalence and difficult-healing circumstances.It is vital to develop multifunctional hydrogel dressings,with well-designed morphology and structure to enhance flexibility and effectiveness in wound management.To achieve these,we propose a self-healing hydrogel dressing based on structural color microspheres for wound management.The microsphere comprised a photothermal-responsive inverse opal framework,which was constructed by hyaluronic acid methacryloyl,silk fibroin methacryloyl and black phosphorus quantum dots(BPQDs),and was further re-filled with a dynamic hydrogel.The dynamic hydrogel filler was formed by Knoevenagel condensation reaction between cyanoacetate and benzaldehyde-functionalized dextran(DEX-CA and DEX-BA).Notably,the composite microspheres can be applied arbitrarily,and they can adhere together upon near-infrared irradiation by leveraging the BPQDs-mediated photothermal effect and the thermoreversible stiffness change of dynamic hydrogel.Additionally,eumenitin and vascular endothelial growth factor were co-loaded in the microspheres and their release behavior can be regulated by the same mechanism.Moreover,effective monitoring of the drug release process can be achieved through visual color variations.The microsphere system has demonstrated desired capabilities of controllable drug release and efficient wound management.These characteristics suggest broad prospects for the proposed composite microspheres in clinical applications.
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0207400)the National Natural Science Foundation of China(Grant No.U22A20168 and 52174225)。
文摘Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.
基金supported by Yibin University,Sichuan,China and Hebei University,Baoding,China(Grant No.521100221033).
文摘Forest hydrology,the study of water dynamics within forested catchments,is crucial for understanding the intricate relationship between forest cover and water balances across different scales,from ecosystems to landscapes,or from catchment watersheds.The intensified global changes in climate,land use and cover,and pollution that occurred over the past century have brought about adverse impacts on forests and their services in water regulation,signifying the importance of forest hydrological research as a re-emerging topic of scientific interest.This article reviews the literature on recent advances in forest hydrological research,intending to identify leading countries,institutions,and researchers actively engaged in this field,as well as highlighting research hotspots for future exploration.Through a systematic analysis using VOSviewer,drawing from 17,006 articles retrieved from the Web of Science Core Collection spanning 2000–2022,we employed scientometric methods to assess research productivity,identify emerging topics,and analyze academic development.The findings reveal a consistent growth in forest hydrological research over the past two decades,with the United States,Charles T.Driscoll,and the Chinese Academy of Sciences emerging as the most productive country,author,and institution,respectively.The Journal of Hydrology emerges as the most co-cited journal.Analysis of keyword co-occurrence and co-cited references highlights key research areas,including climate change,management strategies,runoff-erosion dynamics,vegetation cover changes,paired catchment experiments,water quality,aquatic biodiversity,forest fire dynamics and hydrological modeling.Based on these findings,our study advocates for an integrated approach to future research,emphasizing the collection of data from diverse sources,utilization of varied methodologies,and collaboration across disciplines and institutions.This holistic strategy is essential for developing sustainable approaches to forested watershed planning and management.Ultimately,our study provides valuable insights for researchers,practitioners,and policymakers,guiding future research directions towards forest hydrological research and applications.
文摘Broad area quantum cascade lasers(BA QCLs)have significant applications in many areas,but suffer from demanding pulse operating conditions and poor beam quality due to heat accumulation and generation of high order modes.A structure of mini-array is adopted to improve the heat dissipation capacity and beam quality of BA QCLs.The active region is etched to form a multi-emitter and the channels are filled with In P:Fe,which acts as a lateral heat dissipation channel to improve the lateral heat dissipation efficiency.A device withλ~4.8μm,a peak output power of 122 W at 1.2%duty cycle with a pulse of 1.5μs is obtained in room temperature,with far-field single-lobed distribution.This result allows BA QCLs to obtain high peak power at wider pump pulse widths and higher duty cycle conditions,promotes the application of the mid-infrared laser operating in pulsed mode in th e field of standoff photoacoustic chemical detection,space optical communication,and so on.
文摘Biomedical data is surging due to technological innovations and integration of multidisciplinary data,posing challenges to data management.This article summarizes the policies,data collection efforts,platform construction,and applications of biomedical data in China,aiming to identify key issues and needs,enhance the capacity-building of platform construction,unleash the value of data,and leverage the advantages of China's vast amount of data.