Comprehensive English is a very basic and important course for English majors,according to the features of the text-book A New English Course,teachers should adopt the integration of grammar translation method and com...Comprehensive English is a very basic and important course for English majors,according to the features of the text-book A New English Course,teachers should adopt the integration of grammar translation method and communicative approach to improve students' linguistic competence and communicative competence.展开更多
In order to obtain accurate probability integration method(PIM) parameters for surface movement of multi-panel mining, a genetic algorithm(GA) was used to optimize the parameters. As the measured surface movement is a...In order to obtain accurate probability integration method(PIM) parameters for surface movement of multi-panel mining, a genetic algorithm(GA) was used to optimize the parameters. As the measured surface movement is affected by more than one mining panel, traditional PIM parameter inversion model is difficult to ensure the reliability of the results due to the complexity of rock movement. With crossover,mutation and selection operators, GA can perform a global optimization search and has high computation efficiency. Compared with the pattern search algorithm, the fitness function can avoid falling into local minima traps. GA reduces the risk of local minima traps which improves the accuracy and reliability with the mutation mechanism. Application at Xuehu colliery shows that GA can be used to inverse the PIM parameters for multi-panel surface movement observation, and reliable results can be obtained. The research provides a new way for back-analysis of PIM parameters for mining subsidence under complex conditions.展开更多
This paper focuses on studying the Poisson theory and the integration method of a Birkhoffian system in the event space. The Birkhoff's equations in the event space are given. The Poisson theory of the Birkhoffian sy...This paper focuses on studying the Poisson theory and the integration method of a Birkhoffian system in the event space. The Birkhoff's equations in the event space are given. The Poisson theory of the Birkhoffian system in the event space is established. The definition of the Jacobi last multiplier of the system is given, and the relation between the Jacobi last multiplier and the first integrals of the system is discussed. The researches show that for a Birkhoffian system in the event space, whose configuration is determined by (2n + 1) Birkhoff's variables, the solution of the system can be found by the Jacobi last multiplier if 2n first integrals are known. An example is given to illustrate the application of the results.展开更多
This paper is intended to apply the potential integration method to the differential equations of the Birkhoffian system. The method is that, for a given Birkhoffian system, its differential equations are first rewrit...This paper is intended to apply the potential integration method to the differential equations of the Birkhoffian system. The method is that, for a given Birkhoffian system, its differential equations are first rewritten as 2n first-order differential equations. Secondly, the corresponding partial differential equations are obtained by potential integration method and the solution is expressed as a complete integral. Finally, the integral of the system is obtained.展开更多
This paper focuses on studying the Poisson theory and the integration method of dynamics of relative motion. Equations of a dynamical system of relative motion in phase space are given. Poisson theory of the system is...This paper focuses on studying the Poisson theory and the integration method of dynamics of relative motion. Equations of a dynamical system of relative motion in phase space are given. Poisson theory of the system is established. The Jacobi last multiplier of the system is defined, and the relation between the Jacobi last multiplier and the first integrals of the system is studied. Our research shows that for a dynamical system of relative motion, whose configuration is determined by n generalized coordinates, the solution of the system can be found by using the Jacobi last multiplier if (2n-1) first integrals of the system are known. At the end of the paper, an example is given to illustrate the application of the results.展开更多
Based on the principle of self-adaptive Simpson integration method, and by incorporating the‘fifth-order’Filon’s integration algorithm [Bull. Seism. Soc. Am. 73(1983) 913], we have proposed a simple and efficient n...Based on the principle of self-adaptive Simpson integration method, and by incorporating the‘fifth-order’Filon’s integration algorithm [Bull. Seism. Soc. Am. 73(1983) 913], we have proposed a simple and efficient numerical integration method, i.e., the self-adaptive Filon’s integration method (SAFIM), for computing the synthetic seismograms at large epicentral distances. With numerical examples, we have demonstrated that the SAFIM is not only accurate but also very efficient. This new integration method is expected to be very useful in seismology, as well as in computing similar oscillatory integrals in other branches of physics.展开更多
This paper is intended to apply a potential method of integration to solving the equations of holonomic and nonholonomic systems. For a holonomic system, the differential equations of motion can be written as a system...This paper is intended to apply a potential method of integration to solving the equations of holonomic and nonholonomic systems. For a holonomic system, the differential equations of motion can be written as a system of differential equations of first order and its fundamental partial differential equation is solved by using the potential method of integration. For a nonholonomic system, the equations of the corresponding holonomic system are solved by using the method and then the restriction of the nonholonomic constraints on the initial conditions of motion is added.展开更多
The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF me...The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.展开更多
Based on Nantun Coal Preparation Plant CIMS engineering, the system integrating strategy and methods of implementing CIMS are described. Combining the process of developing the syste, the information and function inte...Based on Nantun Coal Preparation Plant CIMS engineering, the system integrating strategy and methods of implementing CIMS are described. Combining the process of developing the syste, the information and function integration are discussed.展开更多
The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and ...The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and it is explicit in the time domain. Consequently it is a best mixture of FEM and finite volume method (FVM). RK-DGFEM can obtain local high-order accuracy by using high-order polynomial basis. Numerical experiments of transverse magnetic (TM) wave propagation in a 2-D resonator are performed. A high-order Lagrange polynomial basis is adopted. Numerical results agree well with analytical solution. And different order Lagrange interpolation polynomial basis impacts on simulation result accuracy are discussed. Computational results indicate that the accuracy is evidently improved when the order of interpolation basis is increased. Finally, L^2 errors of different order polynomial basis in RK-DGFEM are presented. Computational results show that L^2 error declines exponentially as the order of basis increases.展开更多
This article deals with a class of numerical methods for retarded differential algebraic systems with time-variable delay. The methods can be viewed as a combination of Runge-Kutta methods and Lagrange interpolation. ...This article deals with a class of numerical methods for retarded differential algebraic systems with time-variable delay. The methods can be viewed as a combination of Runge-Kutta methods and Lagrange interpolation. A new convergence concept, called DA-convergence, is introduced. The DA-convergence result for the methods is derived. At the end, a numerical example is given to verify the computational effectiveness and the theoretical result.展开更多
Objective: The integrated method was investigated to measure Vm/Km of mouse liver glutathione S-transfer-ase (GST) activity on GSH and 7-Cl-4-nitrobenzofurazozan. Methods: Presetting concentration of one substrate twe...Objective: The integrated method was investigated to measure Vm/Km of mouse liver glutathione S-transfer-ase (GST) activity on GSH and 7-Cl-4-nitrobenzofurazozan. Methods: Presetting concentration of one substrate twenty-fold above the other's and taking maximum product absorbance Am as parameter while Km as constant, Vm/Km was obtained by nonlinear fitting of GST reaction curve to the integrated Michaelis-Menten equation In [Am/(Am -Ai)] + Ai/ ( ξ× Km ) = ( Vm/Km )×ti (1). Results: Vm/Km for GST showed slight dependence on initial substrate concentration and data range, but it was resistant to background absorbance, error in reaction origin and small deviation in presetting Km. Vm/Km was proportional to the amount of GST with upper limit higher than that by initial rate. There was close correlation between Vm/Km and initial rate of the same GST. Consistent results were obtained by this integrated method and classical initial rate method for the measurement of mouse liver GST. Conclusion: With the concentration of one substrate twenty-fold above the other's, this integrated method was reliable to measure the activity of enzyme on two substrates , and substrate concentration of the lower one close to its apparent Km was able to be used.展开更多
This paper determines the exact error order on optimization of adaptive direct methods of approximate solution of the class of Fredholm integral equations of the second kind with kernel belonging to the anisotropic So...This paper determines the exact error order on optimization of adaptive direct methods of approximate solution of the class of Fredholm integral equations of the second kind with kernel belonging to the anisotropic Sobolev classes, and also gives an optimal algorithm.展开更多
A direct method to find the first integral for two-dimensional autonomous system in polar coordinates is suggested. It is shown that if the equation of motion expressed by differential 1-forms for a given autonomous H...A direct method to find the first integral for two-dimensional autonomous system in polar coordinates is suggested. It is shown that if the equation of motion expressed by differential 1-forms for a given autonomous Hamiltonian system is multiplied by a set of multiplicative functions, then the general expression of the first integral can be obtained, An example is given to illustrate the application of the results.展开更多
The authors study the tractability and strong tractability of a multivariate integration problem in the worst case setting for weighted 1-periodic continuous functions spaces of d coordinates with absolutely convergen...The authors study the tractability and strong tractability of a multivariate integration problem in the worst case setting for weighted 1-periodic continuous functions spaces of d coordinates with absolutely convergent Fourier series. The authors reduce the initial error by a factor ε for functions from the unit ball of the weighted periodic continuous functions spaces. Tractability is the minimal number of function samples required to solve the problem in polynomial in ε^-1 and d, and the strong tractability is the presence of only a polynomial dependence in ε^-1. This problem has been recently studied for quasi-Monte Carlo quadrature rules, quadrature rules with non-negative coefficients, and rules for which all quadrature weights are arbitrary for weighted Korobov spaces of smooth periodic functions of d variables. The authors show that the tractability and strong tractability of a multivariate integration problem in worst case setting hold for the weighted periodic continuous functions spaces with absolutely convergent Fourier series under the same assumptions as in Ref,[14] on the weights of the Korobov space for quasi-Monte Carlo rules and rules for which all quadrature weights are non-negative. The arguments are not constructive.展开更多
In this study,to develop a benefit-allocation model,in-depth analysis of a distributed photovoltaic-powergeneration carport and energy-storage charging-pile project was performed;the model was developed using Shapley ...In this study,to develop a benefit-allocation model,in-depth analysis of a distributed photovoltaic-powergeneration carport and energy-storage charging-pile project was performed;the model was developed using Shapley integrated-empowerment benefit-distribution method.First,through literature survey and expert interview to identify the risk factors at various stages of the project,a dynamic risk-factor indicator system is developed.Second,to obtain a more meaningful risk-calculation result,the subjective and objective weights are combined,the weights of the risk factors at each stage are determined by the expert scoring method and entropy weight method,and the interest distribution model based on multi-dimensional risk factors is established.Finally,an example is used to verify the rationality of the method for the benefit distribution of the charging-pile project.The results of the example indicate that the limitations of the Shapley method can be reasonably avoided,and the applicability of the model for the benefit distribution of the charging-pile project is verified.展开更多
In this article, by introducing characteristic singular integral operator and associate singular integral equations (SIEs), the authors discuss the direct method of solution for a class of singular integral equation...In this article, by introducing characteristic singular integral operator and associate singular integral equations (SIEs), the authors discuss the direct method of solution for a class of singular integral equations with certain analytic inputs. They obtain both the conditions of solvability and the solutions in closed form. It is noteworthy that the method is different from the classical one that is due to Lu.展开更多
This paper presents a novel scheme to monolithically integrate an evanescently-coupled uni-travelling carrier photodiode with a planar short multimode waveguide structure and a large optical cavity electroabsorption m...This paper presents a novel scheme to monolithically integrate an evanescently-coupled uni-travelling carrier photodiode with a planar short multimode waveguide structure and a large optical cavity electroabsorption modulator based on a multimode waveguide structure. By simulation, both electroabsorption modulator and photodiode show excellent optical performances. The device can be fabricated with conventional photolithography, reactive ion etching, and chemical wet etching.展开更多
In this paper, we establish travelling wave solutions for some nonlinear evolution equations. The first integral method is used to construct the travelling wave solutions of the modified Benjamin-Bona-Mahony and the c...In this paper, we establish travelling wave solutions for some nonlinear evolution equations. The first integral method is used to construct the travelling wave solutions of the modified Benjamin-Bona-Mahony and the coupled Klein-Gordon equations. The obtained results include periodic and solitary wave solutions. The first integral method presents a wider applicability to handling nonlinear wave equations.展开更多
With the application of Hammer integral formulas of a continuous function on a triangular element, the numerical integral formulas of some discrete functions on the element are derived by means of decomposition and re...With the application of Hammer integral formulas of a continuous function on a triangular element, the numerical integral formulas of some discrete functions on the element are derived by means of decomposition and recombination of base functions. Hammer integral formulas are the special examples of those of the paper.展开更多
文摘Comprehensive English is a very basic and important course for English majors,according to the features of the text-book A New English Course,teachers should adopt the integration of grammar translation method and communicative approach to improve students' linguistic competence and communicative competence.
基金provided by the National Natural Science Foundation of China(No.51404272)the Hunan Province Key Laboratory of Coal Resources Clean-Utilization and Mine Environment Protection(No.E21224)
文摘In order to obtain accurate probability integration method(PIM) parameters for surface movement of multi-panel mining, a genetic algorithm(GA) was used to optimize the parameters. As the measured surface movement is affected by more than one mining panel, traditional PIM parameter inversion model is difficult to ensure the reliability of the results due to the complexity of rock movement. With crossover,mutation and selection operators, GA can perform a global optimization search and has high computation efficiency. Compared with the pattern search algorithm, the fitness function can avoid falling into local minima traps. GA reduces the risk of local minima traps which improves the accuracy and reliability with the mutation mechanism. Application at Xuehu colliery shows that GA can be used to inverse the PIM parameters for multi-panel surface movement observation, and reliable results can be obtained. The research provides a new way for back-analysis of PIM parameters for mining subsidence under complex conditions.
基金Project supported by the National Natural Science Foundation of China(Grant No.10972151)
文摘This paper focuses on studying the Poisson theory and the integration method of a Birkhoffian system in the event space. The Birkhoff's equations in the event space are given. The Poisson theory of the Birkhoffian system in the event space is established. The definition of the Jacobi last multiplier of the system is given, and the relation between the Jacobi last multiplier and the first integrals of the system is discussed. The researches show that for a Birkhoffian system in the event space, whose configuration is determined by (2n + 1) Birkhoff's variables, the solution of the system can be found by the Jacobi last multiplier if 2n first integrals are known. An example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10572021 and 10772025)
文摘This paper is intended to apply the potential integration method to the differential equations of the Birkhoffian system. The method is that, for a given Birkhoffian system, its differential equations are first rewritten as 2n first-order differential equations. Secondly, the corresponding partial differential equations are obtained by potential integration method and the solution is expressed as a complete integral. Finally, the integral of the system is obtained.
基金supported by the National Natural Science Foundation of China (Grant No. 10972151)
文摘This paper focuses on studying the Poisson theory and the integration method of dynamics of relative motion. Equations of a dynamical system of relative motion in phase space are given. Poisson theory of the system is established. The Jacobi last multiplier of the system is defined, and the relation between the Jacobi last multiplier and the first integrals of the system is studied. Our research shows that for a dynamical system of relative motion, whose configuration is determined by n generalized coordinates, the solution of the system can be found by using the Jacobi last multiplier if (2n-1) first integrals of the system are known. At the end of the paper, an example is given to illustrate the application of the results.
基金Supported by the National Natural Science Foundation of China under Grant No.DYF49625406partially by the State Kay Fundamental Research Project of China(Grant No.95-013-02-01).
文摘Based on the principle of self-adaptive Simpson integration method, and by incorporating the‘fifth-order’Filon’s integration algorithm [Bull. Seism. Soc. Am. 73(1983) 913], we have proposed a simple and efficient numerical integration method, i.e., the self-adaptive Filon’s integration method (SAFIM), for computing the synthetic seismograms at large epicentral distances. With numerical examples, we have demonstrated that the SAFIM is not only accurate but also very efficient. This new integration method is expected to be very useful in seismology, as well as in computing similar oscillatory integrals in other branches of physics.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10272021 and 10572021 and the Doctoral Program Foundation of Institutions of Higher Education of China (Grant No 20040007022).
文摘This paper is intended to apply a potential method of integration to solving the equations of holonomic and nonholonomic systems. For a holonomic system, the differential equations of motion can be written as a system of differential equations of first order and its fundamental partial differential equation is solved by using the potential method of integration. For a nonholonomic system, the equations of the corresponding holonomic system are solved by using the method and then the restriction of the nonholonomic constraints on the initial conditions of motion is added.
文摘The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.
文摘Based on Nantun Coal Preparation Plant CIMS engineering, the system integrating strategy and methods of implementing CIMS are described. Combining the process of developing the syste, the information and function integration are discussed.
文摘The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and it is explicit in the time domain. Consequently it is a best mixture of FEM and finite volume method (FVM). RK-DGFEM can obtain local high-order accuracy by using high-order polynomial basis. Numerical experiments of transverse magnetic (TM) wave propagation in a 2-D resonator are performed. A high-order Lagrange polynomial basis is adopted. Numerical results agree well with analytical solution. And different order Lagrange interpolation polynomial basis impacts on simulation result accuracy are discussed. Computational results indicate that the accuracy is evidently improved when the order of interpolation basis is increased. Finally, L^2 errors of different order polynomial basis in RK-DGFEM are presented. Computational results show that L^2 error declines exponentially as the order of basis increases.
文摘This article deals with a class of numerical methods for retarded differential algebraic systems with time-variable delay. The methods can be viewed as a combination of Runge-Kutta methods and Lagrange interpolation. A new convergence concept, called DA-convergence, is introduced. The DA-convergence result for the methods is derived. At the end, a numerical example is given to verify the computational effectiveness and the theoretical result.
基金National Natural Science Foundation of China (No.30200266)
文摘Objective: The integrated method was investigated to measure Vm/Km of mouse liver glutathione S-transfer-ase (GST) activity on GSH and 7-Cl-4-nitrobenzofurazozan. Methods: Presetting concentration of one substrate twenty-fold above the other's and taking maximum product absorbance Am as parameter while Km as constant, Vm/Km was obtained by nonlinear fitting of GST reaction curve to the integrated Michaelis-Menten equation In [Am/(Am -Ai)] + Ai/ ( ξ× Km ) = ( Vm/Km )×ti (1). Results: Vm/Km for GST showed slight dependence on initial substrate concentration and data range, but it was resistant to background absorbance, error in reaction origin and small deviation in presetting Km. Vm/Km was proportional to the amount of GST with upper limit higher than that by initial rate. There was close correlation between Vm/Km and initial rate of the same GST. Consistent results were obtained by this integrated method and classical initial rate method for the measurement of mouse liver GST. Conclusion: With the concentration of one substrate twenty-fold above the other's, this integrated method was reliable to measure the activity of enzyme on two substrates , and substrate concentration of the lower one close to its apparent Km was able to be used.
基金Project supported by the Natural Science Foundation of China(10371009)Research Fund for the Doctoral Program Higher Education
文摘This paper determines the exact error order on optimization of adaptive direct methods of approximate solution of the class of Fredholm integral equations of the second kind with kernel belonging to the anisotropic Sobolev classes, and also gives an optimal algorithm.
文摘A direct method to find the first integral for two-dimensional autonomous system in polar coordinates is suggested. It is shown that if the equation of motion expressed by differential 1-forms for a given autonomous Hamiltonian system is multiplied by a set of multiplicative functions, then the general expression of the first integral can be obtained, An example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China(10671019)Research Fund for the Doctoral Program Higher Education(20050027007)Beijing Educational Committee(2002Kj112)
文摘The authors study the tractability and strong tractability of a multivariate integration problem in the worst case setting for weighted 1-periodic continuous functions spaces of d coordinates with absolutely convergent Fourier series. The authors reduce the initial error by a factor ε for functions from the unit ball of the weighted periodic continuous functions spaces. Tractability is the minimal number of function samples required to solve the problem in polynomial in ε^-1 and d, and the strong tractability is the presence of only a polynomial dependence in ε^-1. This problem has been recently studied for quasi-Monte Carlo quadrature rules, quadrature rules with non-negative coefficients, and rules for which all quadrature weights are arbitrary for weighted Korobov spaces of smooth periodic functions of d variables. The authors show that the tractability and strong tractability of a multivariate integration problem in worst case setting hold for the weighted periodic continuous functions spaces with absolutely convergent Fourier series under the same assumptions as in Ref,[14] on the weights of the Korobov space for quasi-Monte Carlo rules and rules for which all quadrature weights are non-negative. The arguments are not constructive.
基金Supported by Science and Technology Foundation of SGCC Research and development of key models for decision support of energy internet companies(NO.SGSDJY00GPJS1900057).
文摘In this study,to develop a benefit-allocation model,in-depth analysis of a distributed photovoltaic-powergeneration carport and energy-storage charging-pile project was performed;the model was developed using Shapley integrated-empowerment benefit-distribution method.First,through literature survey and expert interview to identify the risk factors at various stages of the project,a dynamic risk-factor indicator system is developed.Second,to obtain a more meaningful risk-calculation result,the subjective and objective weights are combined,the weights of the risk factors at each stage are determined by the expert scoring method and entropy weight method,and the interest distribution model based on multi-dimensional risk factors is established.Finally,an example is used to verify the rationality of the method for the benefit distribution of the charging-pile project.The results of the example indicate that the limitations of the Shapley method can be reasonably avoided,and the applicability of the model for the benefit distribution of the charging-pile project is verified.
基金Project was supported by RFDP of Higher Education and NNSF of China, SF of Wuhan University
文摘In this article, by introducing characteristic singular integral operator and associate singular integral equations (SIEs), the authors discuss the direct method of solution for a class of singular integral equations with certain analytic inputs. They obtain both the conditions of solvability and the solutions in closed form. It is noteworthy that the method is different from the classical one that is due to Lu.
基金supported by the National Natural Science Foundation of China (Grant No 90401025)the National 973 project (Grant No 2006CB604901)
文摘This paper presents a novel scheme to monolithically integrate an evanescently-coupled uni-travelling carrier photodiode with a planar short multimode waveguide structure and a large optical cavity electroabsorption modulator based on a multimode waveguide structure. By simulation, both electroabsorption modulator and photodiode show excellent optical performances. The device can be fabricated with conventional photolithography, reactive ion etching, and chemical wet etching.
文摘In this paper, we establish travelling wave solutions for some nonlinear evolution equations. The first integral method is used to construct the travelling wave solutions of the modified Benjamin-Bona-Mahony and the coupled Klein-Gordon equations. The obtained results include periodic and solitary wave solutions. The first integral method presents a wider applicability to handling nonlinear wave equations.
文摘With the application of Hammer integral formulas of a continuous function on a triangular element, the numerical integral formulas of some discrete functions on the element are derived by means of decomposition and recombination of base functions. Hammer integral formulas are the special examples of those of the paper.