期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
鲁棒物联网多维时序数据预测方法
1
作者 沈忱 何勇 彭安浪 《计算机工程》 北大核心 2025年第4期107-118,共12页
在物联网(IoT)场景中,数据在采集和传输过程中易受噪声的干扰,导致数据中存在一定的离群值与缺失值。现有的时间正则化矩阵分解模型通常考虑平方损失来衡量重构误差,忽略了处理存在异常数据的多维时间序列时,矩阵分解的质量同样是影响... 在物联网(IoT)场景中,数据在采集和传输过程中易受噪声的干扰,导致数据中存在一定的离群值与缺失值。现有的时间正则化矩阵分解模型通常考虑平方损失来衡量重构误差,忽略了处理存在异常数据的多维时间序列时,矩阵分解的质量同样是影响模型预测性能的关键因素。提出一种基于L_(2,log)范数的时间感知鲁棒非负矩阵分解多维时序预测框架(TARNMF)。TARNMF通过非负矩阵分解(NMF)和参数可学习的自回归(AR)时间正则项建立多维时序数据的时空相关性,基于存在离群值的数据服从拉普拉斯分布的假设,使用L_(2,log)范数来估计非负鲁棒矩阵分解中原始数据和重建矩阵的误差,以减小异常数据对预测模型的干扰。L_(2,log)范数具备现有鲁棒度量函数的性质,解决了L_(1)损失的近似问题,并通过压缩异常值的残差来减少其对目标函数的影响。此外,提出一种基于投影梯度下降的优化方法对模型进行优化。实验结果表明,TARNMF具有良好的可扩展性和鲁棒性,尤其在高维Solar数据集上,较次优结果的相对平均绝对误差降低了8.64%。同时,在噪声数据上的实验结果验证了TARNMF能高效地处理和预测存在异常数据的IoT时序数据。 展开更多
关键词 L_(2 log)范数 非负矩阵分解 时间正则化矩阵分解 多维时序数据预测 鲁棒性
在线阅读 下载PDF
两阶段非负矩阵分解算法及其在光谱解混中的应用
2
作者 杨颂 张新元 +1 位作者 刘晓 孙莉 《山东农业大学学报(自然科学版)》 北大核心 2024年第3期422-426,共5页
非负矩阵分解问题(nonnegative matrix factorization,NMF)模型已成功应用至高光谱遥感影像处理中的光谱解混工作,由于NMF优化模型具有多个局部极小点,使得分解结果不稳定。设计初始化方法或者选择带正则项的问题模型是提高分解精度的... 非负矩阵分解问题(nonnegative matrix factorization,NMF)模型已成功应用至高光谱遥感影像处理中的光谱解混工作,由于NMF优化模型具有多个局部极小点,使得分解结果不稳定。设计初始化方法或者选择带正则项的问题模型是提高分解精度的两种常用方法。本文提出了两阶段的NMF算法,实现了初始点选取和正则项设计的结合。第一阶段借助k-均值获得k个聚类中心,给出迭代的初始点;利用第一阶段的初始矩阵U^(0),定义了针对端元矩阵的正则项‖U-U^(0)‖_(F)^(2),第二阶段采用基于交替非负最小二乘框架的投影梯度算法,求解新的正则化NMF问题。正则项中的端元初始矩阵U^(0)除了采用k-均值获得k个聚类中心,也可采用真实地物光谱,它的引入提高了算法的灵活度。数值结果表明新算法更加稳定,且分解的精确性有效提高。 展开更多
关键词 非负矩阵分解 正则项 投影梯度法 光谱解混
在线阅读 下载PDF
基于结构投影非负矩阵分解的协同过滤算法 被引量:12
3
作者 居斌 钱沄涛 叶敏超 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2015年第7期1319-1325,共7页
针对在协同过滤算法中,传统矩阵分解技术在降维过程中会破坏数据相邻结构的问题,提出基于结构投影非负矩阵分解的协同过滤算法(CF-SPNMF).该算法包含离线学习和在线搜索2个阶段.在离线学习阶段,通过对用户评分矩阵的投影非负矩阵分解,... 针对在协同过滤算法中,传统矩阵分解技术在降维过程中会破坏数据相邻结构的问题,提出基于结构投影非负矩阵分解的协同过滤算法(CF-SPNMF).该算法包含离线学习和在线搜索2个阶段.在离线学习阶段,通过对用户评分矩阵的投影非负矩阵分解,同时保留用户特征的聚类结构,得到低维的用户潜在兴趣因子.在线搜索阶段,将用户潜在兴趣因子进行余弦相似性匹配,发现目标用户与训练样本用户之间兴趣最相似的邻域集合.在实际数据集上的实验结果表明,提出的CF-SPNMF算法与单纯使用矩阵分解和单纯在原评分矩阵上进行用户聚类的推荐算法相比,能够更有效地预测用户实际评分. 展开更多
关键词 协同过滤 投影非负矩阵分解 相邻结构 聚类
在线阅读 下载PDF
遥感图像配准的稳健投影非负矩阵分解方法 被引量:1
4
作者 段西发 田铮 +1 位作者 齐培艳 贺飞跃 《计算机工程与应用》 CSCD 2013年第7期28-34,97,共8页
由于要配准的目标存在可能的形变,震前和震后遥感图像的配准变得很困难。为了解决这个问题,提出基于稳健的投影非负矩阵分解(RPNMF)的配准方法来精确的配准形变目标。给出一种稳健的投影非负矩阵分解方法来获得震前震后形变目标的共同... 由于要配准的目标存在可能的形变,震前和震后遥感图像的配准变得很困难。为了解决这个问题,提出基于稳健的投影非负矩阵分解(RPNMF)的配准方法来精确的配准形变目标。给出一种稳健的投影非负矩阵分解方法来获得震前震后形变目标的共同投影空间,利用在共同投影空间的投影来配准形变目标。为验证该算法的有效性,做了两个实验:2008年5月12日汶川地震前后的SAR图像的配准;唐家山堰塞湖的变化检测。与现有方法进行比较,结果表明该方法能够有效地得到形变目标的共同投影空间,并取得了很好的配准结果;同时,堰塞湖的变化检测也得到了很好的结果。 展开更多
关键词 遥感图像 形变目标 非负矩阵分解 稳健的投影非负矩阵分解 投影空间 异常值
在线阅读 下载PDF
一种基于L_1稀疏正则化和非负矩阵分解的盲源信号分离新算法 被引量:7
5
作者 殷海青 刘红卫 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2010年第5期835-841,共7页
针对线性混合模型下的盲源分离这一反问题,提出了一种结合迭代正则化和非负矩阵分解的交替最小化算法.首先把该问题转化为有界约束的二次规划,然后采用了一种自适应BB(Barzilai-Borwein)步长的投影梯度算法来求解.该方法不仅可减少存储... 针对线性混合模型下的盲源分离这一反问题,提出了一种结合迭代正则化和非负矩阵分解的交替最小化算法.首先把该问题转化为有界约束的二次规划,然后采用了一种自适应BB(Barzilai-Borwein)步长的投影梯度算法来求解.该方法不仅可减少存储量,提高算法速度,而且还很好地刻画了信号的稀疏性和独立性.理论分析和数值试验都验证了该方法的有效性,对混合的二维图像能提高分离的信干比. 展开更多
关键词 盲源信号分离 反问题 非负矩阵分解 投影梯度算法 信干比
在线阅读 下载PDF
基于近邻保留PNMF特征提取的高光谱图像分类 被引量:2
6
作者 温金环 田铮 +2 位作者 林伟 周敏 延伟东 《西北工业大学学报》 EI CAS CSCD 北大核心 2012年第1期138-144,共7页
通过对投影非负矩阵分解(PNMF)增加近邻保留假设,提出了一种新的高光谱图像线性特征提取方法———近邻保留投影非负矩阵分解(NPPNMF)。NPPNMF保留了高光谱数据在低维特征空间中的局部几何结构,克服了PNMF基于Euclidean的缺点。根据在构... 通过对投影非负矩阵分解(PNMF)增加近邻保留假设,提出了一种新的高光谱图像线性特征提取方法———近邻保留投影非负矩阵分解(NPPNMF)。NPPNMF保留了高光谱数据在低维特征空间中的局部几何结构,克服了PNMF基于Euclidean的缺点。根据在构造k近邻图时是否使用训练样本的类标签信息决定了NPPNMF既可以是无监督的特征提取方法,也可以是有监督的特征提取方法,从而提高了PNMF算法的鉴别力。理论证明和高光谱图像数据的分类结果表明了该方法的有效性及应用潜力。 展开更多
关键词 高光谱图像分类 特征提取 降维 投影非负矩阵分解 近邻保留
在线阅读 下载PDF
基于投影梯度及下逼近方法的非负矩阵分解 被引量:3
7
作者 叶军 《计算机工程》 CAS CSCD 2012年第3期200-202,共3页
在非负矩阵分解算法中,为提升基矩阵的稀疏表达能力,在不事先设定稀疏度的情形下,提出一种基于投影梯度及下逼近方法的非负矩阵分解算法——PGNMU。通过引入上界的约束条件,利用基于投影梯度的交替迭代方法提取基矩阵的重要特征并加以... 在非负矩阵分解算法中,为提升基矩阵的稀疏表达能力,在不事先设定稀疏度的情形下,提出一种基于投影梯度及下逼近方法的非负矩阵分解算法——PGNMU。通过引入上界的约束条件,利用基于投影梯度的交替迭代方法提取基矩阵的重要特征并加以应用。在人脸数据库CBCL和ORL上的实验结果表明,该方法能改进基矩阵的稀疏描述能力,且其识别率也优于已有方法。 展开更多
关键词 非负矩阵分解 投影梯度 下逼近 松弛法 稀疏度 基矩阵
在线阅读 下载PDF
图像特征点集匹配的稳健非线性投影NMF方法
8
作者 段西发 田铮 +1 位作者 齐培艳 延伟东 《光电工程》 CAS CSCD 北大核心 2013年第6期129-136,共8页
包含相同目标的图像由于可能存在结构差异而导致特征匹配困难、不精确,针对该问题提出了一种新的匹配方法。首先,提出一种稳健的非线性投影非负矩阵分解方法(RNPNMF),利用RNPNMF得到特征点集的共同投影空间;然后,计算特征点集在共同投... 包含相同目标的图像由于可能存在结构差异而导致特征匹配困难、不精确,针对该问题提出了一种新的匹配方法。首先,提出一种稳健的非线性投影非负矩阵分解方法(RNPNMF),利用RNPNMF得到特征点集的共同投影空间;然后,计算特征点集在共同投影空间的投影,利用特征点集在共同投影空间上的投影实现点集的精确匹配。最后,为验证本文方法的有效性,分别对光学图像和SAR图像进行了实验,实验结果表明:和现有方法相比,本文所提方法能更精确有效的实现特征点集的匹配,同时,应用于图像配准也得到了很好的结果。 展开更多
关键词 投影非负矩阵分解 稳健的非线性投影非负矩阵分解 图像配准 特征匹配 异常值
在线阅读 下载PDF
截断式鲁棒非负矩阵分解算法
9
作者 卢文凯 景丽萍 杨柳 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第4期714-723,共10页
非负矩阵分解算法(Nonnegative Matrix Factorization Algorithm,NMF)已经广泛地应用于诸多领域,但它容易受到异常点的影响.各种针对这个问题的改进方法中,使用L2,1范数的鲁棒非负矩阵算法(Robust Nonnegative Matrix Factorization Alg... 非负矩阵分解算法(Nonnegative Matrix Factorization Algorithm,NMF)已经广泛地应用于诸多领域,但它容易受到异常点的影响.各种针对这个问题的改进方法中,使用L2,1范数的鲁棒非负矩阵算法(Robust Nonnegative Matrix Factorization Algorithm,RNMF)取得了较好的改进效果,但是该算法不能很好的适应数据集异常点比例的变化.针对这一缺点,提出了截断式鲁棒非负矩阵分解算法(Capped Robust Nonnegative Matrix Factorization Algorithm,CRNMF),将去噪比例ε值引入到目标函数中,降低异常点对整体算法的影响.该算法的主要步骤是:在矩阵分解迭代更新的每一步中,计算输入数据与分解因子重构值之间的误差,将误差大于预先设定参数值ε的数据点对应的误差截断为零,重复以上步骤直到收敛.通过ε截断操作,降低基矩阵F和系数矩阵G受异常点的影响.给出了CRNMF的算法描述,并且在模拟数据集和真实数据集进行了实验,实验表明提出的算法与传统的NMF和RNMF相比,可以在一定程度上提高聚类的准确度,减少了异常点对聚类准确度的影响,提高了算法的鲁棒性. 展开更多
关键词 去噪比例ε值 L2 1范数 鲁棒性 非负矩阵分解算法(NMF) 鲁棒非负矩阵分解算法(RNMF)
在线阅读 下载PDF
图像稳健配准的非负子空间匹配方法
10
作者 赵伟 田铮 +2 位作者 杨丽娟 延伟东 温金环 《西北工业大学学报》 EI CAS CSCD 北大核心 2016年第2期362-366,共5页
针对局部场景发生变化的多时相遥感图像配准,提出一种基于非负子空间匹配的配准方法。在图匹配的框架下,该方法同时考虑了特征点集的空间结构和特征点集之间的相似关系,提高了正确匹配率和图像配准精度。与传统图匹配方法相比,该方法增... 针对局部场景发生变化的多时相遥感图像配准,提出一种基于非负子空间匹配的配准方法。在图匹配的框架下,该方法同时考虑了特征点集的空间结构和特征点集之间的相似关系,提高了正确匹配率和图像配准精度。与传统图匹配方法相比,该方法增强了对特征点位置扰动和异常值的稳健性。最后,通过在模拟点集匹配和一组多时相遥感图像配准上与传统图匹配方法的对比分析,验证了该方法的有效性以及应用于多时相遥感图像的可行性。 展开更多
关键词 图像配准 遥感 图匹配 位置扰动 异常值 稳健性
在线阅读 下载PDF
基于增量式鲁棒非负矩阵分解的短文本在线聚类 被引量:7
11
作者 贺超波 汤庸 +2 位作者 张琼 刘双印 刘海 《电子学报》 EI CAS CSCD 北大核心 2019年第5期1086-1093,共8页
对社会化媒体产生的大量短文本进行聚类分析具有重要的应用价值,但短文本往往具有噪音数据多、增长迅速且数据量大的特点,导致现有相关算法难于有效处理.提出一种基于增量式鲁棒非负矩阵分解的短文本在线聚类算法STOCIRNMF.STOCIRNMF基... 对社会化媒体产生的大量短文本进行聚类分析具有重要的应用价值,但短文本往往具有噪音数据多、增长迅速且数据量大的特点,导致现有相关算法难于有效处理.提出一种基于增量式鲁棒非负矩阵分解的短文本在线聚类算法STOCIRNMF.STOCIRNMF基于非负矩阵分解构建短文本聚类模型,通过l_(2,1)范数设计模型的优化求解目标函数提高鲁棒性,同时应用增量式迭代更新规则实现短文本的在线聚类.在搜狐新闻标题和微博短文本数据集上进行相关实验,结果表明STOCIRNMF不仅比现有代表性算法具有更好的聚类性能,而且能够有效对微博话题进行在线检测. 展开更多
关键词 短文本聚类 鲁棒非负矩阵分解 在线聚类 l2 1范数 增量式迭代更新规则
在线阅读 下载PDF
基于多核学习的投影非负矩阵分解算法 被引量:3
12
作者 李谦 景丽萍 于剑 《计算机科学》 CSCD 北大核心 2014年第2期64-67,共4页
非负矩阵分解(NMF)把给定的数据矩阵分解成低维的非负基矩阵和对应的系数矩阵,两者之间存在必然联系。为此,研究者将基矩阵转换为系数矩阵的投影,进一步提高分解效率。但是该方法无法处理非线性数据,核函数的引入部分解决了此问题,却同... 非负矩阵分解(NMF)把给定的数据矩阵分解成低维的非负基矩阵和对应的系数矩阵,两者之间存在必然联系。为此,研究者将基矩阵转换为系数矩阵的投影,进一步提高分解效率。但是该方法无法处理非线性数据,核函数的引入部分解决了此问题,却同时导致核函数参数选择的问题。基于多核学习理论,提出了一种多核学习的投影非负矩阵分解(MKPNMF)算法,该算法有效地避免了核函数参数选择的问题,同时提高了学习性能。在实际人脸数据上的实验结果表明,MKPNMF较已有的NMF类方法具备明显的性能优势。 展开更多
关键词 投影非负矩阵分解 核函数 多核学习
在线阅读 下载PDF
基于Huber损失的非负矩阵分解算法 被引量:4
13
作者 王丽星 曹付元 《计算机科学》 CSCD 北大核心 2020年第11期80-87,共8页
非负矩阵分解(Nonnegative Matrix Factorization)算法能为原始数据找到非负的、线性的矩阵表示且保留了数据的本质特征,已被成功应用于多个领域。经典的NMF算法及其变体算法大部分使用均方误差函数来度量重建误差,在许多任务中已经显... 非负矩阵分解(Nonnegative Matrix Factorization)算法能为原始数据找到非负的、线性的矩阵表示且保留了数据的本质特征,已被成功应用于多个领域。经典的NMF算法及其变体算法大部分使用均方误差函数来度量重建误差,在许多任务中已经显示出其有效性,但它在处理含有噪声的数据时仍然面临一些困难。Huber损失函数对较小的残差执行的惩罚与均方误差损失函数相同,对较大的残差执行的惩罚是线性增长的,因此与均方误差损失函数相比,Huber损失函数具有更强的鲁棒性;已有研究证明L_(2,1)范数稀疏正则项在机器学习的分类和聚类模型中具有特征选择作用。结合两者的优点,文中提出了一种基于Huber损失函数且融入L_(2,1)范数正则项的非负矩阵分解聚类模型,并给出了基于投影梯度更新规则的优化过程。在多组数据集上将所提算法与经典的多种聚类算法进行对比,实验结果验证了所提算法的有效性。 展开更多
关键词 非负矩阵分解 Huber损失函数 L2 1范数 投影梯度法
在线阅读 下载PDF
邻域保持判别非负矩阵分解 被引量:3
14
作者 王亚芳 《计算机工程与应用》 CSCD 北大核心 2010年第28期163-166,共4页
非负矩阵分解(NMF)是一种新的矩阵分解技术,为了提高NMF算法的识别率,提出了一种新的方法——邻域保持判别非负矩阵分解(NPDNMF),该方法通过将邻域保持判别分析(NPDA)与NMF相结合来实现。邻域保持判别分析是一个将线性判别分析(LDA)与... 非负矩阵分解(NMF)是一种新的矩阵分解技术,为了提高NMF算法的识别率,提出了一种新的方法——邻域保持判别非负矩阵分解(NPDNMF),该方法通过将邻域保持判别分析(NPDA)与NMF相结合来实现。邻域保持判别分析是一个将线性判别分析(LDA)与局部保持投影(LPP)综合考虑的判别分析方法,该算法既保持了LDA的判别能力,同时又可以保持原始数据的几何结构。通过将NPDA与NMF相结合,提取得到局部化同时又有很强判别能力的基图像。在ORL人脸数据库上进行人脸识别实验,结果表明该方法得到较好的识别效果。 展开更多
关键词 线性判别分析 邻域保持判别分析 局部保持投影 非负矩阵分解
在线阅读 下载PDF
鲁棒自适应对称非负矩阵分解聚类算法 被引量:5
15
作者 高海燕 刘万金 黄恒君 《计算机应用研究》 CSCD 北大核心 2023年第4期1024-1029,共6页
对称非负矩阵分解SNMF作为一种基于图的聚类算法,能够更自然地捕获图表示中嵌入的聚类结构,并且在线性和非线性流形上获得更好的聚类结果,但对变量的初始化比较敏感。另外,标准的SNMF算法利用误差平方和来衡量分解的质量,对噪声和异常... 对称非负矩阵分解SNMF作为一种基于图的聚类算法,能够更自然地捕获图表示中嵌入的聚类结构,并且在线性和非线性流形上获得更好的聚类结果,但对变量的初始化比较敏感。另外,标准的SNMF算法利用误差平方和来衡量分解的质量,对噪声和异常值敏感。为了解决这些问题,在集成学习视角下,提出一种鲁棒自适应对称非负矩阵分解聚类算法RS3NMF(robust self-adaptived symmetric nonnegative matrix factorization)。基于L2,1范数的RS3NMF模型缓解了噪声和异常值的影响,保持了特征旋转不变性,提高了模型的鲁棒性。同时,在不借助任何附加信息的前提下,利用SNMF对初始化特征的敏感性来逐步增强聚类性能。采用交替迭代方法优化,并保证目标函数值的收敛性。大量实验结果表明,所提RS3NMF算法优于其他先进的算法,具有较强的鲁棒性。 展开更多
关键词 对称非负矩阵分解 鲁棒性 聚类 交替迭代方法
在线阅读 下载PDF
基于局部相似性学习的鲁棒非负矩阵分解 被引量:3
16
作者 侯兴荣 彭冲 《数据采集与处理》 CSCD 北大核心 2023年第5期1125-1141,共17页
现有的非负矩阵分解方法往往聚焦于数据全局结构信息的学习,在很多情况下忽略了对数据局部信息的学习,而局部学习的方法也通常局限于流行学习,存在一些缺陷。为解决这一问题,提出了一种基于数据局部相似性学习的鲁棒非负矩阵分解算法(Ro... 现有的非负矩阵分解方法往往聚焦于数据全局结构信息的学习,在很多情况下忽略了对数据局部信息的学习,而局部学习的方法也通常局限于流行学习,存在一些缺陷。为解决这一问题,提出了一种基于数据局部相似性学习的鲁棒非负矩阵分解算法(Robust nonnegative matrix factorization with local similarity learning,RLS-NMF)。采用一种新的数据局部相似性学习方法,它与流形方法存在显著区别,能够同时学习数据的全局结构信息,从而能挖掘数据类内相似和类间相离的性质。同时,考虑到现实应用中的数据存在异常值和噪声,该算法还使用l_(2,1)范数拟合特征残差,过滤冗余的噪声信息,保证了算法的鲁棒性。多个基准数据集上的实验结果显示了该算法的最优性能,进一步证明了该算法的有效性。 展开更多
关键词 非负矩阵分解 聚类 全局结构 局部相似性 鲁棒性
在线阅读 下载PDF
基于NMF和SURF的视频帧间复制粘贴伪造盲检测 被引量:2
17
作者 李晓丽 杜振龙 《数据采集与处理》 CSCD 北大核心 2017年第4期713-720,共8页
针对视频帧间复制粘贴伪造,本文提出一种基于非负矩阵分解(Nonnegative matrix factorization,NMF)和加速稳健特征(Speed-up robust features,SURF)的帧间复制粘贴伪造盲检测算法。通过对视频帧进行小波变换,提取低频系数矩阵进行非负... 针对视频帧间复制粘贴伪造,本文提出一种基于非负矩阵分解(Nonnegative matrix factorization,NMF)和加速稳健特征(Speed-up robust features,SURF)的帧间复制粘贴伪造盲检测算法。通过对视频帧进行小波变换,提取低频系数矩阵进行非负矩阵分解,将得到的系数矩阵作为视频帧的特征表示衡量帧间的相似性,根据相似度变化趋势判断视频帧间的连续性,从而确定疑似伪造复制粘贴序列的首帧及尾帧,并通过SURF特征匹配进行二次判定。实验结果表明,本文所提出帧间伪造检测算法对连续多帧的复制粘贴伪造具有较好的检测效果,避免了逐帧比对,降低了时间复杂度。 展开更多
关键词 非负矩阵分解 SURF 帧间复制粘贴 视频伪造
在线阅读 下载PDF
一种自适应非负矩阵分解算法 被引量:1
18
作者 李鑫 张伟 张蕾 《吉林大学学报(理学版)》 CAS 北大核心 2020年第4期965-968,共4页
首先,通过引入自适应策略,提出一种基于梯度下降自适应策略的非负矩阵分解算法.其次,通过比较重构非负矩阵的距离度量并自适应调节分解,解决了传统非负矩阵分解方法在求解过程引入的随机性和基向量数目问题,且该算法生成的基向量更具代... 首先,通过引入自适应策略,提出一种基于梯度下降自适应策略的非负矩阵分解算法.其次,通过比较重构非负矩阵的距离度量并自适应调节分解,解决了传统非负矩阵分解方法在求解过程引入的随机性和基向量数目问题,且该算法生成的基向量更具代表性.最后,以对吉林大学某学院本科生成绩进行分析和验证为例考察算法的有效性.实验结果表明,自适应非负矩阵分解方法重构矩阵较传统非负矩阵方法的鲁棒性更好,并将错误率降低20.16%. 展开更多
关键词 非负矩阵分解 自适应 随机性 鲁棒性
在线阅读 下载PDF
基于干净数据的流形正则化非负矩阵分解
19
作者 李华 卢桂馥 余沁茹 《计算机应用》 CSCD 北大核心 2021年第12期3492-3498,共7页
现有的非负矩阵分解(NMF)算法往往基于欧氏距离来设计目标函数,对噪声比较敏感。为了增强算法的鲁棒性,提出一种基于干净数据的流形正则化非负矩阵分解(MRNMF/CD)算法。在MRNMF/CD算法中,把低秩约束、流形正则化和NMF技术无缝地融为一体... 现有的非负矩阵分解(NMF)算法往往基于欧氏距离来设计目标函数,对噪声比较敏感。为了增强算法的鲁棒性,提出一种基于干净数据的流形正则化非负矩阵分解(MRNMF/CD)算法。在MRNMF/CD算法中,把低秩约束、流形正则化和NMF技术无缝地融为一体,使算法性能较为优异。首先,通过添加低秩约束,MRNMF/CD可以从噪声数据中恢复干净数据,并获得数据的全局结构;其次,为了利用数据的局部几何结构信息,MRNMF/CD把流形正则化融入目标函数中。此外,还提出了一种求解MRNMF/CD的迭代算法,并从理论上分析了该求解算法的收敛性。在ORL、Yale和COIL20数据集上的实验结果表明,MRNMF/CD算法比现有的k-means、主成分分析(PCA)、NMF和图正则化非负矩阵分解(GNMF)算法具有更好的识别准确性。 展开更多
关键词 低秩约束 非负矩阵分解 流形正则化 鲁棒性 干净数据
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部