The dynamics of the reshocked multi-mode Richtmyer-Meshkov instability is investigated using 513 × 257^2 three-dimensional ninth-order weighted essentially nonoscil- latory shock-capturing simulations. A two-mode...The dynamics of the reshocked multi-mode Richtmyer-Meshkov instability is investigated using 513 × 257^2 three-dimensional ninth-order weighted essentially nonoscil- latory shock-capturing simulations. A two-mode initial perturbation with superposed ran- dom noise is used to model the Mach 1.5 air/SF6 Vetter-Sturtevant shock tube experiment. The mass fraction and enstrophy isosurfaces, and density cross-sections are utilized to show the detailed flow structure before, during, and after reshock. It is shown that the mixing layer growth agrees well with the experimentally measured growth rate before and after reshock. The post-reshock growth rate is also in good agreement with the prediction of the Mikaelian model. A parametric study of the sensitivity of the layer growth to the choice of amplitudes of the short and long wavelength initial interfacial perturbation is also pre- sented. Finally, the amplification effects of reshock are quantified using the evolution of the turbulent kinetic energy and turbulent enstrophy spectra, as well as the evolution of the baroclinic enstrophy production, buoyancy production, and shear production terms in the enstrophy and turbulent kinetic transport equations.展开更多
A new type of localized oscillatory pattern is presented in a two-layer coupled reaction-diffusion system under conditions in which no Hopf instability can be discerned in either layer.The transitions from stationary ...A new type of localized oscillatory pattern is presented in a two-layer coupled reaction-diffusion system under conditions in which no Hopf instability can be discerned in either layer.The transitions from stationary patterns to asynchronous and synchronous oscillatory patterns are obtained.A novel method based on decomposing coupled systems into two associated subsystems has been proposed to elucidate the mechanism of formation of oscillating patterns.Linear stability analysis of the associated subsystems reveals that the Turing pattern in one layer induces the other layer locally,undergoes a supercritical Hopf bifurcation and gives rise to localized oscillations.It is found that the sizes and positions of oscillations are determined by the spatial distribution of the Turing patterns.When the size is large,localized traveling waves such as spirals and targets emerge.These results may be useful for deeper understanding of pattern formation in complex systems,particularly multilayered systems.展开更多
The explicit analytical solution of Rosensweig instability spikes'shapes obtained by Navier-Stokes(NS)equation in diverse magnetic field H vertical to the flat free surface of ferrofluids are systematically studie...The explicit analytical solution of Rosensweig instability spikes'shapes obtained by Navier-Stokes(NS)equation in diverse magnetic field H vertical to the flat free surface of ferrofluids are systematically studied experimentally and theoretically.After carefully analyzing and solving the NS equation in elliptic form,the force balanced surface equations of spikes in Rosensweig instability are expressed as cosine wave in perturbated magnetic field and hyperbolic tangent in large magnetic field,whose results both reveal the wave-like nature of Rosensweig instability.The results of hyperbolic tangent form are perfectly fitted to the experimental results in this paper,which indicates that the analytical solution is basically correct.Using the forementioned theoretical results,the total energy of the spike distribution pattern is calculated.By analyzing the energy components under different magnetic field intensities H,the hexagon-square transition of Rosensweig instability is systematically discussed and explained in an explicit way.展开更多
By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the el...By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the elasticity of the material at the interface effectively determines the wavelength, because explosive welding is basically a solid-state welding process. To this end, an analytical model of elastic hydrodynamic instabilities is proposed, and the most unstable mode is selected in the solid phase. Similar approaches have been widely used to study the interfacial behavior of solid metals in high-energy-density physics. By comparing the experimental and theoretical results, it is concluded that thermal softening,which significantly reduces the shear modulus, is necessary and sufficient for successful welding. The thermal softening is verified by theoretical analysis of the increase in temperature due to the impacting and sliding of the flyer and base plates, and some experimental observations are qualitatively validated.In summary, the combined effect of the KH and RT instabilities in solids determines the wavy morphology, and our theoretical results are in good qualitative agreement with experimental and numerical observations.展开更多
Transverse mode-coupling instability(TMCI)is a dangerous transverse single-bunch instability that can lead to severe par-ticle loss.The mechanism of TMCI can be explained by the coupling of transverse coherent oscilla...Transverse mode-coupling instability(TMCI)is a dangerous transverse single-bunch instability that can lead to severe par-ticle loss.The mechanism of TMCI can be explained by the coupling of transverse coherent oscillation modes owing to the transverse short-range wakefield(i.e.,the transverse broadband impedance).Recent studies on future circular colliders,e.g.,FCC-ee,showed that the threshold of TMCI decreased significantly when both longitudinal and transverse impedances were included.We performed computations for the circular electron-positron collider(CEPC)and observed a similar phenom-enon.Systematic studies on the influence of longitudinal impedance on the TMCI threshold were conducted.We concluded that the imaginary part of the longitudinal impedance,which caused a reduction in the incoherent synchrotron tune,was the primary reason for the reduction in the TMCI threshold.Additionally,the real part of the longitudinal impedance assists in increasing the TMCI threshold.展开更多
In order to address the issue of gold mixing caused by the Kelvin-Helmholtz instability(KHI)in the double-cone ignition(DCI)scheme,we investigate the growth rate of the KHI at the bi-interface of the DCI scheme after ...In order to address the issue of gold mixing caused by the Kelvin-Helmholtz instability(KHI)in the double-cone ignition(DCI)scheme,we investigate the growth rate of the KHI at the bi-interface of the DCI scheme after applying a coating.This is done by solving the hydrodynamic equations for an ideal incompressible fluid using linear theory.Ultimately,it is discovered that applying a coating with a thickness slightly above h=0.5(λ+10μm)and a density somewhat lower than that of the target layer can effectively reduce the growth rate of interfacial KHI.This work provides theoretical references for studying the bi-interface KHI in the DCI scheme.展开更多
We study the nonlinear stage of modulation instability(MI)in the non-intergrable pure-quartic nonlinear Schrödinger equation where the fourth-order dispersion is modulated periodically.Using the three-mode trunca...We study the nonlinear stage of modulation instability(MI)in the non-intergrable pure-quartic nonlinear Schrödinger equation where the fourth-order dispersion is modulated periodically.Using the three-mode truncation,we reveal the complex recurrence of parametric resonance(PR)breathers,where each recurrence is associated with two oscillation periods(PR period and internal oscillation period).The nonlinear stage of parametric instability admits the maximum energy exchange between the spectrum sidebands and central mode occurring outside the MI gain band.展开更多
High-resolution flow field data has important applications in meteorology,aerospace engineering,high-energy physics and other fields.Experiments and numerical simulations are two main ways to obtain high-resolution fl...High-resolution flow field data has important applications in meteorology,aerospace engineering,high-energy physics and other fields.Experiments and numerical simulations are two main ways to obtain high-resolution flow field data,while the high experiment cost and computing resources for simulation hinder the specificanalysis of flow field evolution.With the development of deep learning technology,convolutional neural networks areused to achieve high-resolution reconstruction of the flow field.In this paper,an ordinary convolutional neuralnetwork and a multi-time-path convolutional neural network are established for the ablative Rayleigh-Taylorinstability.These two methods can reconstruct the high-resolution flow field in just a few seconds,and further greatlyenrich the application of high-resolution reconstruction technology in fluid instability.Compared with the ordinaryconvolutional neural network,the multi-time-path convolutional neural network model has smaller error and canrestore more details of the flow field.The influence of low-resolution flow field data obtained by the two poolingmethods on the convolutional neural networks model is also discussed.展开更多
The existence of a significant electron drift instability(EDI) in the Hall thruster is considered as one of the possible causes of the abnormal increase in axial electron mobility near the outlet of the channel. In re...The existence of a significant electron drift instability(EDI) in the Hall thruster is considered as one of the possible causes of the abnormal increase in axial electron mobility near the outlet of the channel. In recent years, extensive simulation research on the characteristics of EDI has been conducted, but the excitation mechanism and growth mechanism of EDI in linear stage and nonlinear stage remain unclear. In this work, a one-dimensional PIC model in the azimuthal direction of the thruster near-exit region is established to gain further insights into the mechanism of the EDI in detail, and the effects of different types of propellants on EDI characteristics are discussed. The changes in axial electron transport caused by EDI under different types of propellants and electromagnetic field strengths are also examined. The results indicate that EDI undergoes a short linear growth phase before transitioning to the nonlinear phase and finally reaching saturation through the ion Landau damping. The EDI drives a significant ion heating in the azimuthal direction through electron–ion friction before entering the quasi-steady state, which increases the axial mobility of the electrons. Using lighter atomic weight propellant can effectively suppress the oscillation amplitude of EDI, but it will increase the linear growth rate, frequency, and phase velocity of EDI. Compared with the classical mobility, the axial electron mobility under the EDI increases by three orders of magnitude, which is consistent with experimental phenomena. The change of propellant type is insufficient to significantly change the axial electron mobility. It is also found that the collisions between electrons and neutral gasescan significantly affect the axial electron mobility under the influence of EDI, and lead the strength of the electric field to increase and the strength of the magnetic field to decrease, thereby both effectively suppressing the axial transport of electrons.展开更多
The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas w...The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas waves in the channel of graphene field-effect transistors has been investigated with external magnetic field and quantum effects.We analyzed the influence of weak magnetic fields,quantum effects,device size,and temperature on the instability of plasma waves under asymmetric boundary conditions numerically.The results show that the magnetic fields,quantum effects,and the thickness of the dielectric layer between the gate and the channel can increase the radiation frequency.Additionally,we observed that increase in temperature leads to a decrease in both oscillation frequency and instability increment.The numerical results and accompanying images obtained from our simulations provide support for the above conclusions.展开更多
The stability of open-pit mine slopes is crucial for safe and efficient mining operations.However,the presence of weak interlayers poses significant challenges in maintaining the stability of slopes.To explore the imp...The stability of open-pit mine slopes is crucial for safe and efficient mining operations.However,the presence of weak interlayers poses significant challenges in maintaining the stability of slopes.To explore the impact of the rock arching effect on slopes during excavation,understand the deformation zones and evaluation stages in such environments,and analyze the formation and characteristics of cracks,this study investigated the instability mechanism of open-pit mine slopes with weak interlayers through physical and numerical modeling.Focusing on the Zaharnur open-pit coal mine in China as a prototype,a sophisticated physical model test employing particle image velocimetry and Brillouin optical frequency domain analysis was conducted to comprehensively analyze the displacement and strain variation characteristics of open-pit mine slopes.The displacement,strain,stress redistribution,and failure processes of slopes under excavation were comprehensively analyzed through physical and numerical modeling.The results showed that the slope model exhibited a strain pattern in which the strain incrementally increased from its center toward the edges,and the landslide thrust was converted into an internal force along the arch axis and transmitted to the supports.The concept of the rock arching effect specific to soft rocks was proposed,shedding new light on an important phenomenon specific to open-pit slopes with weak interlayers.Based on its deformation characteristics,the slope could be divided into three areas:The excavation influence area,the crack area and the failure area.In addition,the ratios of the height and width of the outermost cracks to the excavation width fluctuated in the ranges of 0.36–0.49 and0.72–1.00,respectively.These findings contribute to a better understanding of the instability mechanisms in open-pit mine slopes with weak interlayers and provide valuable guidelines for safe mining practices.展开更多
In this paper,we get a necessary and sufficient condition such that a class of differential inequalities hold.Using this necessary and sufficient condition,we prove that a class of first order nonhomogeneous ordinary ...In this paper,we get a necessary and sufficient condition such that a class of differential inequalities hold.Using this necessary and sufficient condition,we prove that a class of first order nonhomogeneous ordinary differential equations have the Hyers-Ulam stability.And then,we prove that some first order nonhomogeneous ordinary differential equations and some second order nonhomogeneous ordinary differential equations do not have the Hyers-Ulam instability under some suitable conditions.展开更多
基金performed under the auspices of the U.S.Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
文摘The dynamics of the reshocked multi-mode Richtmyer-Meshkov instability is investigated using 513 × 257^2 three-dimensional ninth-order weighted essentially nonoscil- latory shock-capturing simulations. A two-mode initial perturbation with superposed ran- dom noise is used to model the Mach 1.5 air/SF6 Vetter-Sturtevant shock tube experiment. The mass fraction and enstrophy isosurfaces, and density cross-sections are utilized to show the detailed flow structure before, during, and after reshock. It is shown that the mixing layer growth agrees well with the experimentally measured growth rate before and after reshock. The post-reshock growth rate is also in good agreement with the prediction of the Mikaelian model. A parametric study of the sensitivity of the layer growth to the choice of amplitudes of the short and long wavelength initial interfacial perturbation is also pre- sented. Finally, the amplification effects of reshock are quantified using the evolution of the turbulent kinetic energy and turbulent enstrophy spectra, as well as the evolution of the baroclinic enstrophy production, buoyancy production, and shear production terms in the enstrophy and turbulent kinetic transport equations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12275065,12275064,12475203)the Natural Science Foundation of Hebei Province(Grant Nos.A2021201010 and A2024201020)+3 种基金Interdisciplinary Research Program of Natural Science of Hebei University(Grant No.DXK202108)Hebei Provincial Central Government Guiding Local Science and Technology Development Funds(Grant No.236Z1501G)Scientific Research and Innovation Team Foundation of Hebei University(Grant No.IT2023B03)the Excellent Youth Research Innovation Team of Hebei University(Grant No.QNTD202402)。
文摘A new type of localized oscillatory pattern is presented in a two-layer coupled reaction-diffusion system under conditions in which no Hopf instability can be discerned in either layer.The transitions from stationary patterns to asynchronous and synchronous oscillatory patterns are obtained.A novel method based on decomposing coupled systems into two associated subsystems has been proposed to elucidate the mechanism of formation of oscillating patterns.Linear stability analysis of the associated subsystems reveals that the Turing pattern in one layer induces the other layer locally,undergoes a supercritical Hopf bifurcation and gives rise to localized oscillations.It is found that the sizes and positions of oscillations are determined by the spatial distribution of the Turing patterns.When the size is large,localized traveling waves such as spirals and targets emerge.These results may be useful for deeper understanding of pattern formation in complex systems,particularly multilayered systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51735006,51927810,and U1837206)Beijing Municipal Natural Science Foundation(Grant No.3182013).
文摘The explicit analytical solution of Rosensweig instability spikes'shapes obtained by Navier-Stokes(NS)equation in diverse magnetic field H vertical to the flat free surface of ferrofluids are systematically studied experimentally and theoretically.After carefully analyzing and solving the NS equation in elliptic form,the force balanced surface equations of spikes in Rosensweig instability are expressed as cosine wave in perturbated magnetic field and hyperbolic tangent in large magnetic field,whose results both reveal the wave-like nature of Rosensweig instability.The results of hyperbolic tangent form are perfectly fitted to the experimental results in this paper,which indicates that the analytical solution is basically correct.Using the forementioned theoretical results,the total energy of the spike distribution pattern is calculated.By analyzing the energy components under different magnetic field intensities H,the hexagon-square transition of Rosensweig instability is systematically discussed and explained in an explicit way.
基金the National Natural Science Foundation of China(Grant Nos.12002037 and 12141201).
文摘By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the elasticity of the material at the interface effectively determines the wavelength, because explosive welding is basically a solid-state welding process. To this end, an analytical model of elastic hydrodynamic instabilities is proposed, and the most unstable mode is selected in the solid phase. Similar approaches have been widely used to study the interfacial behavior of solid metals in high-energy-density physics. By comparing the experimental and theoretical results, it is concluded that thermal softening,which significantly reduces the shear modulus, is necessary and sufficient for successful welding. The thermal softening is verified by theoretical analysis of the increase in temperature due to the impacting and sliding of the flyer and base plates, and some experimental observations are qualitatively validated.In summary, the combined effect of the KH and RT instabilities in solids determines the wavy morphology, and our theoretical results are in good qualitative agreement with experimental and numerical observations.
基金the National Natural Science Foundation of China(No.12375149)the National Key R&D Program of China(No.2022YFA1603401)the Innovation Study of the IHEP.
文摘Transverse mode-coupling instability(TMCI)is a dangerous transverse single-bunch instability that can lead to severe par-ticle loss.The mechanism of TMCI can be explained by the coupling of transverse coherent oscillation modes owing to the transverse short-range wakefield(i.e.,the transverse broadband impedance).Recent studies on future circular colliders,e.g.,FCC-ee,showed that the threshold of TMCI decreased significantly when both longitudinal and transverse impedances were included.We performed computations for the circular electron-positron collider(CEPC)and observed a similar phenom-enon.Systematic studies on the influence of longitudinal impedance on the TMCI threshold were conducted.We concluded that the imaginary part of the longitudinal impedance,which caused a reduction in the incoherent synchrotron tune,was the primary reason for the reduction in the TMCI threshold.Additionally,the real part of the longitudinal impedance assists in increasing the TMCI threshold.
基金Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA 25051000)。
文摘In order to address the issue of gold mixing caused by the Kelvin-Helmholtz instability(KHI)in the double-cone ignition(DCI)scheme,we investigate the growth rate of the KHI at the bi-interface of the DCI scheme after applying a coating.This is done by solving the hydrodynamic equations for an ideal incompressible fluid using linear theory.Ultimately,it is discovered that applying a coating with a thickness slightly above h=0.5(λ+10μm)and a density somewhat lower than that of the target layer can effectively reduce the growth rate of interfacial KHI.This work provides theoretical references for studying the bi-interface KHI in the DCI scheme.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12175178 and 12247103)the Natural Science Basic Research Program of Shaanxi Province,China(Grant No.2022KJXX-71)the Shaanxi Fundamental Science Research Project for Mathematics and Physics(Grant No.22JSY016).
文摘We study the nonlinear stage of modulation instability(MI)in the non-intergrable pure-quartic nonlinear Schrödinger equation where the fourth-order dispersion is modulated periodically.Using the three-mode truncation,we reveal the complex recurrence of parametric resonance(PR)breathers,where each recurrence is associated with two oscillation periods(PR period and internal oscillation period).The nonlinear stage of parametric instability admits the maximum energy exchange between the spectrum sidebands and central mode occurring outside the MI gain band.
基金National Natural Science Foundation of China(1180500311947102+4 种基金12004005)Natural Science Foundation of Anhui Province(2008085MA162008085QA26)University Synergy Innovation Program of Anhui Province(GXXT-2022-039)State Key Laboratory of Advanced Electromagnetic Technology(Grant No.AET 2024KF006)。
文摘High-resolution flow field data has important applications in meteorology,aerospace engineering,high-energy physics and other fields.Experiments and numerical simulations are two main ways to obtain high-resolution flow field data,while the high experiment cost and computing resources for simulation hinder the specificanalysis of flow field evolution.With the development of deep learning technology,convolutional neural networks areused to achieve high-resolution reconstruction of the flow field.In this paper,an ordinary convolutional neuralnetwork and a multi-time-path convolutional neural network are established for the ablative Rayleigh-Taylorinstability.These two methods can reconstruct the high-resolution flow field in just a few seconds,and further greatlyenrich the application of high-resolution reconstruction technology in fluid instability.Compared with the ordinaryconvolutional neural network,the multi-time-path convolutional neural network model has smaller error and canrestore more details of the flow field.The influence of low-resolution flow field data obtained by the two poolingmethods on the convolutional neural networks model is also discussed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11975062 and 11605021)the Fundamental Research Funds for the Central Universities (Grant No.3132023192)。
文摘The existence of a significant electron drift instability(EDI) in the Hall thruster is considered as one of the possible causes of the abnormal increase in axial electron mobility near the outlet of the channel. In recent years, extensive simulation research on the characteristics of EDI has been conducted, but the excitation mechanism and growth mechanism of EDI in linear stage and nonlinear stage remain unclear. In this work, a one-dimensional PIC model in the azimuthal direction of the thruster near-exit region is established to gain further insights into the mechanism of the EDI in detail, and the effects of different types of propellants on EDI characteristics are discussed. The changes in axial electron transport caused by EDI under different types of propellants and electromagnetic field strengths are also examined. The results indicate that EDI undergoes a short linear growth phase before transitioning to the nonlinear phase and finally reaching saturation through the ion Landau damping. The EDI drives a significant ion heating in the azimuthal direction through electron–ion friction before entering the quasi-steady state, which increases the axial mobility of the electrons. Using lighter atomic weight propellant can effectively suppress the oscillation amplitude of EDI, but it will increase the linear growth rate, frequency, and phase velocity of EDI. Compared with the classical mobility, the axial electron mobility under the EDI increases by three orders of magnitude, which is consistent with experimental phenomena. The change of propellant type is insufficient to significantly change the axial electron mobility. It is also found that the collisions between electrons and neutral gasescan significantly affect the axial electron mobility under the influence of EDI, and lead the strength of the electric field to increase and the strength of the magnetic field to decrease, thereby both effectively suppressing the axial transport of electrons.
基金Project supported by the National Natural Science Foundation of China (Grant No.12065015)the Hongliu Firstlevel Discipline Construction Project of Lanzhou University of Technology。
文摘The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas waves in the channel of graphene field-effect transistors has been investigated with external magnetic field and quantum effects.We analyzed the influence of weak magnetic fields,quantum effects,device size,and temperature on the instability of plasma waves under asymmetric boundary conditions numerically.The results show that the magnetic fields,quantum effects,and the thickness of the dielectric layer between the gate and the channel can increase the radiation frequency.Additionally,we observed that increase in temperature leads to a decrease in both oscillation frequency and instability increment.The numerical results and accompanying images obtained from our simulations provide support for the above conclusions.
基金supported by the National Natural Science Foundation of China(Nos.52204135 and 52374124)Young Elite Scientists Sponsorship Program by China Association for Science and Technology(No.2023QNRC001)+2 种基金Basic Research Project of Liaoning Provincial Department of Education,China(No.LJ222410147010)2022 China Liaoning International Science and Technology Cooperation Plan Project(No.2022JH2/10700004)Ordos Major Science and Technology Program,(No.JBGS-2023-003)。
文摘The stability of open-pit mine slopes is crucial for safe and efficient mining operations.However,the presence of weak interlayers poses significant challenges in maintaining the stability of slopes.To explore the impact of the rock arching effect on slopes during excavation,understand the deformation zones and evaluation stages in such environments,and analyze the formation and characteristics of cracks,this study investigated the instability mechanism of open-pit mine slopes with weak interlayers through physical and numerical modeling.Focusing on the Zaharnur open-pit coal mine in China as a prototype,a sophisticated physical model test employing particle image velocimetry and Brillouin optical frequency domain analysis was conducted to comprehensively analyze the displacement and strain variation characteristics of open-pit mine slopes.The displacement,strain,stress redistribution,and failure processes of slopes under excavation were comprehensively analyzed through physical and numerical modeling.The results showed that the slope model exhibited a strain pattern in which the strain incrementally increased from its center toward the edges,and the landslide thrust was converted into an internal force along the arch axis and transmitted to the supports.The concept of the rock arching effect specific to soft rocks was proposed,shedding new light on an important phenomenon specific to open-pit slopes with weak interlayers.Based on its deformation characteristics,the slope could be divided into three areas:The excavation influence area,the crack area and the failure area.In addition,the ratios of the height and width of the outermost cracks to the excavation width fluctuated in the ranges of 0.36–0.49 and0.72–1.00,respectively.These findings contribute to a better understanding of the instability mechanisms in open-pit mine slopes with weak interlayers and provide valuable guidelines for safe mining practices.
基金Supported by Natural Science Research Projects of Liaoning Province Education Department(Grant No.LJ212410146024).
文摘In this paper,we get a necessary and sufficient condition such that a class of differential inequalities hold.Using this necessary and sufficient condition,we prove that a class of first order nonhomogeneous ordinary differential equations have the Hyers-Ulam stability.And then,we prove that some first order nonhomogeneous ordinary differential equations and some second order nonhomogeneous ordinary differential equations do not have the Hyers-Ulam instability under some suitable conditions.