In this study,different influence mechanisms associated with temperatures and pH values were investigated through cemented paste backfill(CPB)systems.CPB samples were prepared with temperatures ranging from 10 to 50℃...In this study,different influence mechanisms associated with temperatures and pH values were investigated through cemented paste backfill(CPB)systems.CPB samples were prepared with temperatures ranging from 10 to 50℃ in 10℃ increments and pH values of 3,7,and 13.Then,the CPB mixture were subjected to rheological tests,thermogravimetric analysis(TG),derivative thermogravimetry analysis(DTG),Fourier-transform infrared spectroscopy(FT-IR),and scanning electron microscopy(SEM).Results demonstrated that the temperatures had significant effects on the rheological properties of CPB,whereas the effects of pH values were relatively unapparent.Higher temperatures(over 20℃)were prone to bring higher shear stress,yield stress,and apparent viscosity with the same pH value condition.However,an overly high temperature(50℃)cannot raise the apparent viscosity.Non-neutral conditions,for pH values of 3 and 13,could strengthen the shear stress and apparent viscosity at the same temperature.Two different yield stress curves could be discovered by uprising pH values,which also led to apparent viscosity of two various curves under the same temperatures(under 50℃).Microscopically,rheological properties of CPB were affected by temperatures and pH values which enhanced or reduced the cement hydration procedures,rates,products and space structures.展开更多
Using butyl acrylate(BA),methyl methacrylate(MMA),methacrylic acid(MAA) and mixed emulsifier as raw materials,the self-crosslinked emulsion was prepared via pre-emulsified and semi-continuous seeded emulsion polymeriz...Using butyl acrylate(BA),methyl methacrylate(MMA),methacrylic acid(MAA) and mixed emulsifier as raw materials,the self-crosslinked emulsion was prepared via pre-emulsified and semi-continuous seeded emulsion polymerization technology in the presence of N-hydroxymethyl acrylamide and poly solidum maleate. The influence of mass ratio of BA to MMA,amount of N-hydroxymethyl acrylamide and poly solidum maleate on the rheological properties of the self-crosslinked emulsion was studied. Possible cross-linked mechanism of self-crosslinked monomer was investigated. And the relationship between emulsion viscosity and shear rate was investigated. The results show that the self-crosslinked acrylate emulsion with high elasticity can be synthesized when the mass fractions of BA is 60%,MMA is 40%,and added amount of N-hydroxymethyl acrylamide is 2.5%-3.0% and added amount of poly solidum maleate is 0.3%-0.4%. The self-crosslinkage process of N-hydroxymethyl acrylamide involves two steps. One is copolymerization of N-hydroxymethyl acrylamide and acrylate,the other is cross-linkage among polymer molecules via condensation reaction of methylol. The emulsion is of rheological properties of pseudo-plastic fluid and belongs to non-Newtonian fluid.展开更多
The influence of temperature and mass fraction of Pluonic F127 on the rheological properties of polyvinyl butyric (PVB)/Pluronic F127/polyethylene glycol (PEG) 200 blend systems was investigated by a rotational rh...The influence of temperature and mass fraction of Pluonic F127 on the rheological properties of polyvinyl butyric (PVB)/Pluronic F127/polyethylene glycol (PEG) 200 blend systems was investigated by a rotational rheometer with parallel plates. The results show that the blend systems approach homogeneous state at 140, 150 and 160℃while the rheological properties of the blend systems significantly deviate from the homogeneous systems at 120℃. Shear thinning behavior is observed for all the blend systems at different temperatures and is enhanced by increasing Pluronic F127 content. The complex viscosity, storage modulus, loss modulus, zero-shear activation energy and flow recovery of the blend systems increase with the increase of Pluronic F127 content. There is a crossing point for the loss modulus and the storage modulus of each sample at high frequency, which is called specified frequency (SF). The loss modulus is larger than the storage modulus when the frequency is less than the SF, and when frequency is more than SF, the loss modulus is smaller than the storage modulus.展开更多
The effect of reduced glutathione (GSH) on fresh and pre-proofed frozen dough rheological properties were investigated using dynamic stress rheometry and small scale extensibility with the addition of three levels (80...The effect of reduced glutathione (GSH) on fresh and pre-proofed frozen dough rheological properties were investigated using dynamic stress rheometry and small scale extensibility with the addition of three levels (80×10-6, 160× 10-6 and 240×10-6 GSH) and six storage times (0 and 1 day, 2, 4, 6 and 8 weeks). Three relaxation times (1, 13 and 26min) after loading the dough in the rheometer were used to determine storage (G’) and loss (G”) moduli. Correlations for G’ (r=0.678 and 0.622 at 0.05, and 10Hz, respectively) and G” (r=0.699, and 0.690 at 0.05, and 10Hz, respectively) were observed with the area under the extension curve at 26 min relaxation time. The addition of GSH to fresh dough reduced G’ (16.4% to 55.9%) and G” (13.7% to 52.2%). Freezing and frozen storage caused increase in G’ and G”. The addition of GSH reduced dough strength indicated by the reduction in maximum resistance to extension (Rmax) and the ratio of maximum resistance to extensibility (Rmax/E). The reduction in Rmax across all relaxation times ranged from 16.2% to 59.4%. An increase in dough extension (E) was observed with 240×10-6 GSH at all frozen storage and rest period times. Addition of GSH caused an increase of liquid phase (30.6% to 35.3%) in fresh dough and frozen dough (10.3% to 20.7%) after one day frozen storage. Negative correlations of water content in the solid phase with dough extensibility and area under the extensibility curve were found (r=-0.594 and-0.563, respectively, p<0.001). This suggests a loss of dough extensibility and strength as the water holding capacity of the dough components changes during frozen storage.展开更多
The initial shear stress and plastic cohesion ( η ) are the most important parameters reflecting the rheological properties of the paste slurry. The rheological parameters as well as the quantitative relationship amo...The initial shear stress and plastic cohesion ( η ) are the most important parameters reflecting the rheological properties of the paste slurry. The rheological parameters as well as the quantitative relationship among the consumption of different fill materials were obtained through the experiment and research on these parameters. They can be used to predict the scope of the values of τ and η in production for a given ratio, which can reduce the conveying resistance of fill slurry along the pipelines and avoid the blockage of the pipelines. It is found that the rheological model of the total tailing slurry belongs to the Bingham type, which has a feature of strong internal structure and large initial shear stress. The calculation formula for the resistance loss of pipelines conforms nicely to the field test and the actual production in Jinchuan Nickel Mine.展开更多
Konjac black tea(sugar-free) and konjac glucomannan(KGM) solution were studied by using rheometer,refractometer etc.The relationship between their rheological properties and temperature or concentration was discussed ...Konjac black tea(sugar-free) and konjac glucomannan(KGM) solution were studied by using rheometer,refractometer etc.The relationship between their rheological properties and temperature or concentration was discussed in detail.The results showed that viscosity was significantly affected by temperature and concentration;and pH stability of Konjac-tea was related to the molecular property of KGM.展开更多
Graphene oxide nanomaterials are increasingly used in various fields due to their superior properties.In order to study the influence of graphene oxide additives on the performance of modified asphalt,in this study,gr...Graphene oxide nanomaterials are increasingly used in various fields due to their superior properties.In order to study the influence of graphene oxide additives on the performance of modified asphalt,in this study,graphene oxide modified asphalt was prepared and characteristics was studied including the high deformation resistance performance and the self-healing property of modified asphalt.Functional groups and morphology of graphene oxide modified asphalt were described by Fourier transform infrared spectroscopy.The high deformation resistance performance and self-healing effect of asphalt samples were obtained through dynamic slear rheometer(DSR)test.Results shows that graphene oxide dispersions improve the performance of asphalt relatively well compared to graphene oxide powder.There is no chemical reaction between graphene oxide and asphalt,but physical connection.The addition of graphene oxide improved the high deformation resistance of modified asphalt and expedited the self-healing ability of asphalt under fatigue load.展开更多
As for ceramic stereolithography technique,the preparation of suitable resin-based ceramic slurry is of primary importance.In this study,the effects of powder characteristics such as specific surface area,particle siz...As for ceramic stereolithography technique,the preparation of suitable resin-based ceramic slurry is of primary importance.In this study,the effects of powder characteristics such as specific surface area,particle size and distribution,particle morphology on the rheological behavior of zirconia resin-based suspensions were investigated intensively.Results show that the specific surface area of the powder is the most important factor affecting slurry viscosity.Choosing low specific surface area and quasi-spherical shaped powder is more likely to obtain low viscosity slurries.In addition,the influence of solid loading on the flow behavior were also studied using Krieger-Dougherty model.Zirconia samples with the relative density of(97.83±0.33)%were obtained after sintering at 1550℃.No obvious abnormal grain growth in the microstructure of the sintered body is observed.Results indicate that after the optimization of the processing parameters with the help of rheology characterization,complex-shaped high-quality zirconia parts can be obtained using the stereolithography technique.展开更多
Possibility of cemented gangue backfill was studied with gangue of Suncun Coal Mine, Xinwen Coal Group, Shandong, and fly ash of nearby thermal power plant, in order to treat enormous coal gangue on a large scale and ...Possibility of cemented gangue backfill was studied with gangue of Suncun Coal Mine, Xinwen Coal Group, Shandong, and fly ash of nearby thermal power plant, in order to treat enormous coal gangue on a large scale and to recovery safety coal pillars. The results indicate that coal gangue is not an ideal aggregate for pipeline gravity flow backfill, but such disadvantages of gangue as bad fluidity and serious pipe wear can be overcome by addition of fly ash. It is approved that quality indexes such as strength and dewatering ratio and piping feature of slurry can satisfy requirement of cemented backfill if mass ratio of cement to fly ash to gangue is 1:4:15 and mass fraction of solid materials reaches 72%-75%. Harden mechanism suggests that the cemented gangue fill has a higher middle and long term comprehensive strength.展开更多
A viscoelastic micromechanical model is presented to predict the dynamic modulus of asphalt concrete (AC) and investigate the effect of imperfect interface between asphalt mastic and aggregates on the overall viscoe...A viscoelastic micromechanical model is presented to predict the dynamic modulus of asphalt concrete (AC) and investigate the effect of imperfect interface between asphalt mastic and aggregates on the overall viscoelastic characteristics of AC. The linear spring layer model is introduced to simulate the interface imperfection. Based on the effective medium theory, the viscoelastic micromechanical model is developed by two equivalence processes. The present prediction is compared with available experimental data to verify the developed framework. It is found that the proposed model has the capability to predict the dynamic modulus of AC. Interface effect on the dynamic modulus of AC is discussed using the developed model. It is shown that the interfacial bonding strength has a significant influence on the global mechanical performance of AC, and that continued improvement in surface fimctionalization is necessary to realize the full potential of aggregates reinforcement.展开更多
Rolling force for strip casting of 1Cr17 ferritic stainless steel was predicted using theoretical model and artificial intelligence.Solution zone was classified into two parts by kiss point position during casting str...Rolling force for strip casting of 1Cr17 ferritic stainless steel was predicted using theoretical model and artificial intelligence.Solution zone was classified into two parts by kiss point position during casting strip.Navier-Stokes equation in fluid mechanics and stream function were introduced to analyze the rheological property of liquid zone and mushy zone,and deduce the analytic equation of unit compression stress distribution.The traditional hot rolling model was still used in the solid zone.Neural networks based on feedforward training algorithm in Bayesian regularization were introduced to build model for kiss point position.The results show that calculation accuracy for verification data of 94.67% is in the range of ±7.0%,which indicates that the predicting accuracy of this model is very high.展开更多
Polyether ether ketone(PEEK)has good mechanical properties.However,its high viscosity when molten limits its use because it is hard to process.PEEK nanocomposites containing both carbon nanotubes(CNTs)and polyether im...Polyether ether ketone(PEEK)has good mechanical properties.However,its high viscosity when molten limits its use because it is hard to process.PEEK nanocomposites containing both carbon nanotubes(CNTs)and polyether imide(PEI)were pre-pared by a direct wet powder blending method using a vertical injection molding machine.The addition of an optimum amount of PEI lowered the viscosity of the molten PEEK by approximately 50%while producing an increase in the toughness of the nanocom-posites,whose strain to failure increased by 129%,and fracture energy increased by 97%.The uniformly dispersed CNT/PEI powder reduced the processing difficulty of PEEK nanocomposites without affecting the thermal resistance.This improvement of the strength and viscosity of PEEK facilitate its use in the preparation of thermoplastic composites.展开更多
基金Project(2019zzts678)supported by the Fundamental Research Funds for the Central Universities,China。
文摘In this study,different influence mechanisms associated with temperatures and pH values were investigated through cemented paste backfill(CPB)systems.CPB samples were prepared with temperatures ranging from 10 to 50℃ in 10℃ increments and pH values of 3,7,and 13.Then,the CPB mixture were subjected to rheological tests,thermogravimetric analysis(TG),derivative thermogravimetry analysis(DTG),Fourier-transform infrared spectroscopy(FT-IR),and scanning electron microscopy(SEM).Results demonstrated that the temperatures had significant effects on the rheological properties of CPB,whereas the effects of pH values were relatively unapparent.Higher temperatures(over 20℃)were prone to bring higher shear stress,yield stress,and apparent viscosity with the same pH value condition.However,an overly high temperature(50℃)cannot raise the apparent viscosity.Non-neutral conditions,for pH values of 3 and 13,could strengthen the shear stress and apparent viscosity at the same temperature.Two different yield stress curves could be discovered by uprising pH values,which also led to apparent viscosity of two various curves under the same temperatures(under 50℃).Microscopically,rheological properties of CPB were affected by temperatures and pH values which enhanced or reduced the cement hydration procedures,rates,products and space structures.
基金Project(2003B10506) supported by Guangdong Provincial Department of Science and Technology, China
文摘Using butyl acrylate(BA),methyl methacrylate(MMA),methacrylic acid(MAA) and mixed emulsifier as raw materials,the self-crosslinked emulsion was prepared via pre-emulsified and semi-continuous seeded emulsion polymerization technology in the presence of N-hydroxymethyl acrylamide and poly solidum maleate. The influence of mass ratio of BA to MMA,amount of N-hydroxymethyl acrylamide and poly solidum maleate on the rheological properties of the self-crosslinked emulsion was studied. Possible cross-linked mechanism of self-crosslinked monomer was investigated. And the relationship between emulsion viscosity and shear rate was investigated. The results show that the self-crosslinked acrylate emulsion with high elasticity can be synthesized when the mass fractions of BA is 60%,MMA is 40%,and added amount of N-hydroxymethyl acrylamide is 2.5%-3.0% and added amount of poly solidum maleate is 0.3%-0.4%. The self-crosslinkage process of N-hydroxymethyl acrylamide involves two steps. One is copolymerization of N-hydroxymethyl acrylamide and acrylate,the other is cross-linkage among polymer molecules via condensation reaction of methylol. The emulsion is of rheological properties of pseudo-plastic fluid and belongs to non-Newtonian fluid.
基金Project(20776161) supported by the National Natural Science Foundation of China
文摘The influence of temperature and mass fraction of Pluonic F127 on the rheological properties of polyvinyl butyric (PVB)/Pluronic F127/polyethylene glycol (PEG) 200 blend systems was investigated by a rotational rheometer with parallel plates. The results show that the blend systems approach homogeneous state at 140, 150 and 160℃while the rheological properties of the blend systems significantly deviate from the homogeneous systems at 120℃. Shear thinning behavior is observed for all the blend systems at different temperatures and is enhanced by increasing Pluronic F127 content. The complex viscosity, storage modulus, loss modulus, zero-shear activation energy and flow recovery of the blend systems increase with the increase of Pluronic F127 content. There is a crossing point for the loss modulus and the storage modulus of each sample at high frequency, which is called specified frequency (SF). The loss modulus is larger than the storage modulus when the frequency is less than the SF, and when frequency is more than SF, the loss modulus is smaller than the storage modulus.
基金Financial Support of Oklahorna Wheat Foundation, Oklahome Wheat Commission and Oklahoma Experiment Station of Oklahoma State University.
文摘The effect of reduced glutathione (GSH) on fresh and pre-proofed frozen dough rheological properties were investigated using dynamic stress rheometry and small scale extensibility with the addition of three levels (80×10-6, 160× 10-6 and 240×10-6 GSH) and six storage times (0 and 1 day, 2, 4, 6 and 8 weeks). Three relaxation times (1, 13 and 26min) after loading the dough in the rheometer were used to determine storage (G’) and loss (G”) moduli. Correlations for G’ (r=0.678 and 0.622 at 0.05, and 10Hz, respectively) and G” (r=0.699, and 0.690 at 0.05, and 10Hz, respectively) were observed with the area under the extension curve at 26 min relaxation time. The addition of GSH to fresh dough reduced G’ (16.4% to 55.9%) and G” (13.7% to 52.2%). Freezing and frozen storage caused increase in G’ and G”. The addition of GSH reduced dough strength indicated by the reduction in maximum resistance to extension (Rmax) and the ratio of maximum resistance to extensibility (Rmax/E). The reduction in Rmax across all relaxation times ranged from 16.2% to 59.4%. An increase in dough extension (E) was observed with 240×10-6 GSH at all frozen storage and rest period times. Addition of GSH caused an increase of liquid phase (30.6% to 35.3%) in fresh dough and frozen dough (10.3% to 20.7%) after one day frozen storage. Negative correlations of water content in the solid phase with dough extensibility and area under the extensibility curve were found (r=-0.594 and-0.563, respectively, p<0.001). This suggests a loss of dough extensibility and strength as the water holding capacity of the dough components changes during frozen storage.
文摘The initial shear stress and plastic cohesion ( η ) are the most important parameters reflecting the rheological properties of the paste slurry. The rheological parameters as well as the quantitative relationship among the consumption of different fill materials were obtained through the experiment and research on these parameters. They can be used to predict the scope of the values of τ and η in production for a given ratio, which can reduce the conveying resistance of fill slurry along the pipelines and avoid the blockage of the pipelines. It is found that the rheological model of the total tailing slurry belongs to the Bingham type, which has a feature of strong internal structure and large initial shear stress. The calculation formula for the resistance loss of pipelines conforms nicely to the field test and the actual production in Jinchuan Nickel Mine.
基金National Natural Science Foundation of China(3 0 3 710 0 9)
文摘Konjac black tea(sugar-free) and konjac glucomannan(KGM) solution were studied by using rheometer,refractometer etc.The relationship between their rheological properties and temperature or concentration was discussed in detail.The results showed that viscosity was significantly affected by temperature and concentration;and pH stability of Konjac-tea was related to the molecular property of KGM.
基金supported by Gansu Provincial Science and Technology Plan(23CXGA0195)Longnan Science and Technology Plan(2024CX03)。
文摘Graphene oxide nanomaterials are increasingly used in various fields due to their superior properties.In order to study the influence of graphene oxide additives on the performance of modified asphalt,in this study,graphene oxide modified asphalt was prepared and characteristics was studied including the high deformation resistance performance and the self-healing property of modified asphalt.Functional groups and morphology of graphene oxide modified asphalt were described by Fourier transform infrared spectroscopy.The high deformation resistance performance and self-healing effect of asphalt samples were obtained through dynamic slear rheometer(DSR)test.Results shows that graphene oxide dispersions improve the performance of asphalt relatively well compared to graphene oxide powder.There is no chemical reaction between graphene oxide and asphalt,but physical connection.The addition of graphene oxide improved the high deformation resistance of modified asphalt and expedited the self-healing ability of asphalt under fatigue load.
基金National Key Research and Development Program of China(2017YFB0310400)National Natural Science Foundation of China(51572277,51702340)+1 种基金Shanghai Sailing Program(17YF1428800)Natural Science Foundation of Shanghai(17ZR1434800)。
文摘As for ceramic stereolithography technique,the preparation of suitable resin-based ceramic slurry is of primary importance.In this study,the effects of powder characteristics such as specific surface area,particle size and distribution,particle morphology on the rheological behavior of zirconia resin-based suspensions were investigated intensively.Results show that the specific surface area of the powder is the most important factor affecting slurry viscosity.Choosing low specific surface area and quasi-spherical shaped powder is more likely to obtain low viscosity slurries.In addition,the influence of solid loading on the flow behavior were also studied using Krieger-Dougherty model.Zirconia samples with the relative density of(97.83±0.33)%were obtained after sintering at 1550℃.No obvious abnormal grain growth in the microstructure of the sintered body is observed.Results indicate that after the optimization of the processing parameters with the help of rheology characterization,complex-shaped high-quality zirconia parts can be obtained using the stereolithography technique.
基金Project(50490274) supported by the National Natural Science Foundation of China
文摘Possibility of cemented gangue backfill was studied with gangue of Suncun Coal Mine, Xinwen Coal Group, Shandong, and fly ash of nearby thermal power plant, in order to treat enormous coal gangue on a large scale and to recovery safety coal pillars. The results indicate that coal gangue is not an ideal aggregate for pipeline gravity flow backfill, but such disadvantages of gangue as bad fluidity and serious pipe wear can be overcome by addition of fly ash. It is approved that quality indexes such as strength and dewatering ratio and piping feature of slurry can satisfy requirement of cemented backfill if mass ratio of cement to fly ash to gangue is 1:4:15 and mass fraction of solid materials reaches 72%-75%. Harden mechanism suggests that the cemented gangue fill has a higher middle and long term comprehensive strength.
基金Project(51408173)supported by the National Natural Science Foundation of China
文摘A viscoelastic micromechanical model is presented to predict the dynamic modulus of asphalt concrete (AC) and investigate the effect of imperfect interface between asphalt mastic and aggregates on the overall viscoelastic characteristics of AC. The linear spring layer model is introduced to simulate the interface imperfection. Based on the effective medium theory, the viscoelastic micromechanical model is developed by two equivalence processes. The present prediction is compared with available experimental data to verify the developed framework. It is found that the proposed model has the capability to predict the dynamic modulus of AC. Interface effect on the dynamic modulus of AC is discussed using the developed model. It is shown that the interfacial bonding strength has a significant influence on the global mechanical performance of AC, and that continued improvement in surface fimctionalization is necessary to realize the full potential of aggregates reinforcement.
基金Project(2004CB619108) supported by National Basic Research Program of China
文摘Rolling force for strip casting of 1Cr17 ferritic stainless steel was predicted using theoretical model and artificial intelligence.Solution zone was classified into two parts by kiss point position during casting strip.Navier-Stokes equation in fluid mechanics and stream function were introduced to analyze the rheological property of liquid zone and mushy zone,and deduce the analytic equation of unit compression stress distribution.The traditional hot rolling model was still used in the solid zone.Neural networks based on feedforward training algorithm in Bayesian regularization were introduced to build model for kiss point position.The results show that calculation accuracy for verification data of 94.67% is in the range of ±7.0%,which indicates that the predicting accuracy of this model is very high.
文摘Polyether ether ketone(PEEK)has good mechanical properties.However,its high viscosity when molten limits its use because it is hard to process.PEEK nanocomposites containing both carbon nanotubes(CNTs)and polyether imide(PEI)were pre-pared by a direct wet powder blending method using a vertical injection molding machine.The addition of an optimum amount of PEI lowered the viscosity of the molten PEEK by approximately 50%while producing an increase in the toughness of the nanocom-posites,whose strain to failure increased by 129%,and fracture energy increased by 97%.The uniformly dispersed CNT/PEI powder reduced the processing difficulty of PEEK nanocomposites without affecting the thermal resistance.This improvement of the strength and viscosity of PEEK facilitate its use in the preparation of thermoplastic composites.