传统的多类型反向最近邻(multiple type reverse nearest neighbor,MTRNN)查询算法没有过滤搜索空间中的数据,因此效率低下。为有效提高MTRNN查询的效率,在概述MTRNN基础上采用几何方法开发了基于R-tree的闭区域和开区域修剪方法并进一...传统的多类型反向最近邻(multiple type reverse nearest neighbor,MTRNN)查询算法没有过滤搜索空间中的数据,因此效率低下。为有效提高MTRNN查询的效率,在概述MTRNN基础上采用几何方法开发了基于R-tree的闭区域和开区域修剪方法并进一步提出了高效的过滤算法。过滤算法通过构造闭修剪区域和开修剪区域来修剪查询空间,对大数据下的MTRNN查询过滤效果十分显著。最后通过实验验证了算法的有效性。展开更多
在外包空间数据库模式下,数据持有者委托第三方数据发布者代替它来管理数据并且执行查询.当发布者受到攻击或者由于自身的不安全性,它可能返回不正确的查询结果给用户.基于已有的反向k近邻(Reverse k Nearest Neighbor,RkNN)查询方法,...在外包空间数据库模式下,数据持有者委托第三方数据发布者代替它来管理数据并且执行查询.当发布者受到攻击或者由于自身的不安全性,它可能返回不正确的查询结果给用户.基于已有的反向k近邻(Reverse k Nearest Neighbor,RkNN)查询方法,采用将反向k近邻查询验证转化成k近邻查询验证和范围查询验证的思想,提出一种反向k近邻查询验证的方法,并且设计了相应的算法,用于验证返回给客户端结果的正确性(没有结果点被篡改),有效性(结果点都满足用户的查询要求)和完整性(没有遗漏符合查询要求的结果点).实验验证了算法的有效性和实用性.展开更多
分析现有反k近邻(reverse k nearest neighbor,RkNN)查询在效率、数据维度等方面的不足,提出基于R树结点覆盖值(R-tree’s cover-value)的RC-反k近邻查询方法.该方法需预先计算R树每个结点的覆盖值,采用过滤-精炼两步式处理方法,在过滤...分析现有反k近邻(reverse k nearest neighbor,RkNN)查询在效率、数据维度等方面的不足,提出基于R树结点覆盖值(R-tree’s cover-value)的RC-反k近邻查询方法.该方法需预先计算R树每个结点的覆盖值,采用过滤-精炼两步式处理方法,在过滤阶段采用两种剪枝启发式.该方法可有效处理数据库更新,适用于任意k值、任意维的对象集,查询结果精确,且计算量较小.实验结果表明,在k>6时RC-反k近邻查询时间比同类工作更短.展开更多
文摘传统的多类型反向最近邻(multiple type reverse nearest neighbor,MTRNN)查询算法没有过滤搜索空间中的数据,因此效率低下。为有效提高MTRNN查询的效率,在概述MTRNN基础上采用几何方法开发了基于R-tree的闭区域和开区域修剪方法并进一步提出了高效的过滤算法。过滤算法通过构造闭修剪区域和开修剪区域来修剪查询空间,对大数据下的MTRNN查询过滤效果十分显著。最后通过实验验证了算法的有效性。
文摘在外包空间数据库模式下,数据持有者委托第三方数据发布者代替它来管理数据并且执行查询.当发布者受到攻击或者由于自身的不安全性,它可能返回不正确的查询结果给用户.基于已有的反向k近邻(Reverse k Nearest Neighbor,RkNN)查询方法,采用将反向k近邻查询验证转化成k近邻查询验证和范围查询验证的思想,提出一种反向k近邻查询验证的方法,并且设计了相应的算法,用于验证返回给客户端结果的正确性(没有结果点被篡改),有效性(结果点都满足用户的查询要求)和完整性(没有遗漏符合查询要求的结果点).实验验证了算法的有效性和实用性.
文摘分析现有反k近邻(reverse k nearest neighbor,RkNN)查询在效率、数据维度等方面的不足,提出基于R树结点覆盖值(R-tree’s cover-value)的RC-反k近邻查询方法.该方法需预先计算R树每个结点的覆盖值,采用过滤-精炼两步式处理方法,在过滤阶段采用两种剪枝启发式.该方法可有效处理数据库更新,适用于任意k值、任意维的对象集,查询结果精确,且计算量较小.实验结果表明,在k>6时RC-反k近邻查询时间比同类工作更短.