An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption l...An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety.展开更多
Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster...Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster field retrieve remote sensing data.To improve this problem,this paper proposes an ontology and rule based retrieval(ORR)method to retrieve disaster remote sensing data,and this method introduces ontology technology to express earthquake disaster and remote sensing knowledge,on this basis,and realizes the task suitability reasoning of earthquake disaster remote sensing data,mining the semantic relationship between remote sensing metadata and disasters.The prototype system is built according to the ORR method,which is compared with the traditional method,using the ORR method to retrieve disaster remote sensing data can reduce the knowledge requirements of data users in the retrieval process and improve data retrieval efficiency.展开更多
The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq....The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq. km.) on the Loess Plateau. It sums up Remote sensing (RS), Geographical Information System (GIS) and Expert System (ES) and consists of a integrated system. As a basic level information system of Loess Plateau, its perfection and psreading will bring about a great advance in resources exploitation and management of Loess Plateau.展开更多
Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging du...Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging due to advances in both camouflage materials and biological mimicry.Although multispectral-RGB based technology shows promise,conventional dual-aperture multispectral-RGB imaging systems are constrained by imprecise and time-consuming registration and fusion across different modalities,limiting their performance.Here,we propose the Reconstructed Multispectral-RGB Fusion Network(RMRF-Net),which reconstructs RGB images into multispectral ones,enabling efficient multimodal segmentation using only an RGB camera.Specifically,RMRF-Net employs a divergentsimilarity feature correction strategy to minimize reconstruction errors and includes an efficient boundary-aware decoder to enhance object contours.Notably,we establish the first real-world aerial multispectral-RGB semantic segmentation of camouflage objects dataset,including 11 object categories.Experimental results demonstrate that RMRF-Net outperforms existing methods,achieving 17.38 FPS on the NVIDIA Jetson AGX Orin,with only a 0.96%drop in mIoU compared to the RTX 3090,showing its practical applicability in multimodal remote sensing.展开更多
A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decom...A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13% at small training samples and the weaknesses of the conventional methods are overcome.展开更多
Removal of cloud cover on the satellite remote sensing image can effectively improve the availability of remote sensing images. For thin cloud cover, support vector value contourlet transform is used to achieve multi-...Removal of cloud cover on the satellite remote sensing image can effectively improve the availability of remote sensing images. For thin cloud cover, support vector value contourlet transform is used to achieve multi-scale decomposition of the area of thin cloud cover on remote sensing images. Through enhancing coefficients of high frequency and suppressing coefficients of low frequency, the thin cloud is removed. For thick cloud cover, if the areas of thick cloud cover on multi-source or multi-temporal remote sensing images do not overlap, the multi-output support vector regression learning method is used to remove this kind of thick clouds. If the thick cloud cover areas overlap, by using the multi-output learning of the surrounding areas to predict the surface features of the overlapped thick cloud cover areas, this kind of thick cloud is removed. Experimental results show that the proposed cloud removal method can effectively solve the problems of the cloud overlapping and radiation difference among multi-source images. The cloud removal image is clear and smooth.展开更多
In the field of satellite imagery, remote sensing image captioning(RSIC) is a hot topic with the challenge of overfitting and difficulty of image and text alignment. To address these issues, this paper proposes a visi...In the field of satellite imagery, remote sensing image captioning(RSIC) is a hot topic with the challenge of overfitting and difficulty of image and text alignment. To address these issues, this paper proposes a vision-language aligning paradigm for RSIC to jointly represent vision and language. First, a new RSIC dataset DIOR-Captions is built for augmenting object detection in optical remote(DIOR) sensing images dataset with manually annotated Chinese and English contents. Second, a Vision-Language aligning model with Cross-modal Attention(VLCA) is presented to generate accurate and abundant bilingual descriptions for remote sensing images. Third, a crossmodal learning network is introduced to address the problem of visual-lingual alignment. Notably, VLCA is also applied to end-toend Chinese captions generation by using the pre-training language model of Chinese. The experiments are carried out with various baselines to validate VLCA on the proposed dataset. The results demonstrate that the proposed algorithm is more descriptive and informative than existing algorithms in producing captions.展开更多
The development of image classification is one of the most important research topics in remote sensing. The prediction accuracy depends not only on the appropriate choice of the machine learning method but also on the...The development of image classification is one of the most important research topics in remote sensing. The prediction accuracy depends not only on the appropriate choice of the machine learning method but also on the quality of the training datasets. However, real-world data is not perfect and often suffers from noise. This paper gives an overview of noise filtering methods. Firstly, the types of noise and the consequences of class noise on machine learning are presented. Secondly, class noise handling methods at both the data level and the algorithm level are introduced. Then ensemble-based class noise handling methods including class noise removal, correction, and noise robust ensemble learners are presented. Finally, a summary of existing data-cleaning techniques is given.展开更多
Based on the statistical characteristics of remote sensing data, the spatial geometric structure characteristics of spectral data and distribution of background, interference and alteration information in characterist...Based on the statistical characteristics of remote sensing data, the spatial geometric structure characteristics of spectral data and distribution of background, interference and alteration information in characteristic space were researched through the analysis of two-dimensional and three-dimensional scatter diagrams. The results indicate that the hyper-space of remote sensing multi-data aggregation belongs to low-dimensional geometric structure, i.e. hyperplane form, and anomalous point groups including alteration information usually dissociate out of hyperplane. Scatter diagrams of remote sensing data band are mainly presented as two distribution forms of single-ellipse and dual-ellipse. Clarifying the relations of three objects of background, disturbance and alteration information in remote sensing images provides an important technical thought and guidance for accurately detecting and extracting remote sensing alteration information.展开更多
Since the complication of monitoring and evaluating the problems about the transgenic expression and its impacts on the receptor in the transgenic crop breeding and other relevant evaluated works,the authors in the pr...Since the complication of monitoring and evaluating the problems about the transgenic expression and its impacts on the receptor in the transgenic crop breeding and other relevant evaluated works,the authors in the present work tried to assess the differences of spectral parameters of the transgenic rice in contrast with its parent group quantitatively and qualitatively,fulfilling the growth monitoring of the transgenic samples.The spectral parameters(spectral morphological characteristics and indices) chosen are highly related to internal or external stresses to the receipts,and thus could be applied as indicators of biophysical or biochemical processes changes of plant.By ASD portable field spectroradiometer with high-density probe,fine foliar spectra of 8 groups were obtained.By analyzing spectral angle and continuum removal,the spectral morphological differences and their locations of sample spectra were found which could be as auxiliary priori knowledge for quantitative analysis.By investigating spectral indices of the samples,the quantitative differences of spectra were revealed about foliar chlorophyll a+b and carotenoid content.In this study both the spectral differences between transgenic and parent groups and among transgenic groups were investigated.The results show that hyperspectral technique is promising and a helpful auxiliary tool in the study of monitoring the transgenic crop and other relevant researches.By this technique,quantitative and qualitative results of sample spectra could be provided as prior knowledge,as certain orientation,for laboratory professional advanced transgenic breeding study.展开更多
Ⅰ. Introduction Over the past two decades, microwave remote sensing has evolved into a focal point in the remote sensing area. This is due to the fact that in microwave band, we can acquire physical parameters about ...Ⅰ. Introduction Over the past two decades, microwave remote sensing has evolved into a focal point in the remote sensing area. This is due to the fact that in microwave band, we can acquire physical parameters about ocean, terrain and atmosphere on all weather condition. Research and application work about the aerial passive micro wave remote sensors has been done at Changchun Institute of Geography since 1973, under the unitary planning of Academia Sinica. Microwave radiometers of six freqency bands have been developed. Numerous remote sensing experiments were carried out, and large amount of scientific data were accumulated. Recently, theoretical models have展开更多
The components of urban surface cover are diversified,and component temperature has greater physical significance and application values in the studies on urban thermal environment.Although the multi-angle retrieval a...The components of urban surface cover are diversified,and component temperature has greater physical significance and application values in the studies on urban thermal environment.Although the multi-angle retrieval algorithm of component temperature has been matured gradually,its application in the studies on urban thermal environment is restricted due to the difficulty in acquiring urban-scale multi-angle thermal infrared data.Therefore,based on the existing multi-source multi-band remote sensing data,access to appropriate urban-scale component temperature is an urgent issue to be solved in current studies on urban thermal infrared remote sensing.Then,a retrieval algorithm of urban component temperature by multi-source multi-band remote sensing data on the basis of MODIS and Landsat TM images was proposed with expectations achieved in this work,which was finally validated by the experiment on urban images of Changsha,China.The results show that:1) Mean temperatures of impervious surface components and vegetation components are the maximum and minimum,respectively,which are in accordance with the distribution laws of actual surface temperature; 2) High-accuracy retrieval results are obtained in vegetation component temperature.Moreover,through a contrast between retrieval results and measured data,it is found that the retrieval temperature of impervious surface component has the maximum deviation from measured temperature and its deviation is greater than 1 ℃,while the deviation in vegetation component temperature is relatively low at 0.5 ℃.展开更多
Sea-ice and Sea Surface Temperature in offshore seas are important terms for operational monitoring and forecasting marine environment in China. The software system of regional marine environmental application designe...Sea-ice and Sea Surface Temperature in offshore seas are important terms for operational monitoring and forecasting marine environment in China. The software system of regional marine environmental application designed by author is used for realtime operational monitoring sea-ice, SST, oceanic current and colours and characters of land surface. This software system processes quantitative AVHRR data from NOAA satellite to calculate calibration coefficient, solar angle correction, earth location parameter and atmospheric attenuation correction, then SST field will be produced through calculation using special SST model, and top-quality of colour composite imagery of satellite with variable spacial resolution (1, 2 or 5km) will be produced via image processing. Inside front covor Figure 1 is colour enhanced imagery with 5km resolution of NOAA satellite in offshore展开更多
Ⅰ. INTRODUCTION Changbai Mountain is situated between E127°54′-128°08′, N40°58′-42°06′ about 2700 meters above sea level. It is the typical area of the mountainous climate in the monsoon area ...Ⅰ. INTRODUCTION Changbai Mountain is situated between E127°54′-128°08′, N40°58′-42°06′ about 2700 meters above sea level. It is the typical area of the mountainous climate in the monsoon area of the temperate zone on the globe. The well reserved primeval vertical distribution of natural landscape belts and the Natural Conservation of Changbai Mountains adopted by the UNESCO′s MAB Program cause the worldwide attention of geographers. Beside the complexity of the climatic structure itself, the mechanical effection of the high mountain body also effect the climate in the eastern part of China. In the mountain area where short of meteorological observation data, the climatic study by remote sensing is favorable for discovery and representation of climatic law in large area.展开更多
In 1979, the Changchun Jingyuetan Remote Sensing Study and Test Site (RSSTS)began its work, and it was formally established in 1985. The RSSTS is subordinated the Changchun Branch of Chinese Academy of Sciences and is...In 1979, the Changchun Jingyuetan Remote Sensing Study and Test Site (RSSTS)began its work, and it was formally established in 1985. The RSSTS is subordinated the Changchun Branch of Chinese Academy of Sciences and is supported by the Changchun Institute of Geography and Changchun Institute of Optics and Fine Machnics, Chinese Academy of Sciences. It is under the management of the Resource & Environment Bureau of Chinese Academy of Sciences and it is the study base of remote sensing basis and application tests in China. The RSSTS is situated in the Jingyuetan scenic spot of the suburbs of Changchun City, Jilin Province. It is located at 43°40′—43°50′N and 125°18′-125°18′E.展开更多
An overall vector radiative transfer theory was developed for numerical modeling, in both active and passive microwave remote sensing. The Theory and approaches are briefly summerized.To quantitatively understand scat...An overall vector radiative transfer theory was developed for numerical modeling, in both active and passive microwave remote sensing. The Theory and approaches are briefly summerized.To quantitatively understand scattering and thermal emission from targets in active and passive remote sensing, we have developed an overall vector radiative transfer theory for a set of theoretical models of discrete scatterer and continuous random media for the earth terrain (wet soil, vegetation, snow, sea-ice, etc.) and atmosphere, and numerical approaches for simulation, data analysis, and parameter sensitivity test. Our numerical results favorably agreed with experimental data in microwave re mote sensing of various earth surfaces. Main approaches are briefly summerized herewith.展开更多
The spontaneous burning has been lasting for thousands of years in the coal fields in the north of China. It spreads from the west (Tianshan coal field) to the east (Huolinhe coal field). Its E-W extension is up to 37...The spontaneous burning has been lasting for thousands of years in the coal fields in the north of China. It spreads from the west (Tianshan coal field) to the east (Huolinhe coal field). Its E-W extension is up to 3750km, concentrating in N35°toN45°, its vertical depth up to 260m, and the surface temprature locally up to 270℃. Annually, it burns out 0, 250-300 million tones of coal, causing economic loss equivalent to 2-3 billion R.M.B. Yuan.It destroies coal resources and causes hazards in coal mines. In order to locate the extent and the direction in coal burning areas, the remote sensing technique has heen used and has produced an obvious benefit.展开更多
Tibet Plateau is Known as "the Roof of the World" with the area of 1,220,000km^2, which is about 1/8 land area of China. Because of the high elevation, cold climate and it caused difficulties in regional eco...Tibet Plateau is Known as "the Roof of the World" with the area of 1,220,000km^2, which is about 1/8 land area of China. Because of the high elevation, cold climate and it caused difficulties in regional economic planning and land resources management. Since 1985, the land use investigation in Tibet has been carried out, in which the basic data and thematic maps must be obtained and completed at county and township levels, in order to meet the needs of local administrations. In the investigation, remote sensing technology was comprehensively adopted. At present, the investigation in county level had been completed and the compilation is going to be carried out. Due to paying a great attention to studying on a series of key technical problems, the systematic methods of using remote sensing technology in the plateau land use investigation were formed and successfully put into application.展开更多
Ⅰ The Indexes of Detecting Oil and Gas Resources The deeply buried reservoir which in a dynamic equilibrium state has a great pressure inside, and between it and earth surface there is a great difference of pressure....Ⅰ The Indexes of Detecting Oil and Gas Resources The deeply buried reservoir which in a dynamic equilibrium state has a great pressure inside, and between it and earth surface there is a great difference of pressure. Therefore the hydrocarbon must spread and move vertically to the surface along the pressure gradient orientation. Hydrocarbons in the reservoir along some small rifts, cracks, joints and cleavages penetrate the overlying strata and seepage onto the surface. Thus the hydrocarbons become unvisble oil and gas signs. This process is called the phenomena of hydrocarbon microseepage of reservoir. Hydrocarbons microseepage in the process展开更多
The Landsat image information has recently been widely applied to structural geology, especially to the analysis of lineaments, owing to their macroscopic, visual and comprehensive features. The images will be more ef...The Landsat image information has recently been widely applied to structural geology, especially to the analysis of lineaments, owing to their macroscopic, visual and comprehensive features. The images will be more effective when applied to the interpretation of active faults. Active faults are widely ditributed in China. Much attention has been paid to the study of active faults both in China and abroad. There is certain controversy concerning the implication of the term "active fault". Strictly speaking, the term should refer only to the faults that are still active in the present day. However, the term also usually refers to the faults which have been active continually or intermittently from the Quaternary (or the end of Tertiary) to the present day. We propose that the tones and the configurations of features on Landsat images are the principal keys to the interpretation of active faults. The faults, which display the most prominent展开更多
文摘An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety.
基金supported by the National Key Research and Development Program of China(2020YFC1512304).
文摘Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster field retrieve remote sensing data.To improve this problem,this paper proposes an ontology and rule based retrieval(ORR)method to retrieve disaster remote sensing data,and this method introduces ontology technology to express earthquake disaster and remote sensing knowledge,on this basis,and realizes the task suitability reasoning of earthquake disaster remote sensing data,mining the semantic relationship between remote sensing metadata and disasters.The prototype system is built according to the ORR method,which is compared with the traditional method,using the ORR method to retrieve disaster remote sensing data can reduce the knowledge requirements of data users in the retrieval process and improve data retrieval efficiency.
文摘The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq. km.) on the Loess Plateau. It sums up Remote sensing (RS), Geographical Information System (GIS) and Expert System (ES) and consists of a integrated system. As a basic level information system of Loess Plateau, its perfection and psreading will bring about a great advance in resources exploitation and management of Loess Plateau.
基金National Natural Science Foundation of China(Grant Nos.62005049 and 62072110)Natural Science Foundation of Fujian Province(Grant No.2020J01451).
文摘Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging due to advances in both camouflage materials and biological mimicry.Although multispectral-RGB based technology shows promise,conventional dual-aperture multispectral-RGB imaging systems are constrained by imprecise and time-consuming registration and fusion across different modalities,limiting their performance.Here,we propose the Reconstructed Multispectral-RGB Fusion Network(RMRF-Net),which reconstructs RGB images into multispectral ones,enabling efficient multimodal segmentation using only an RGB camera.Specifically,RMRF-Net employs a divergentsimilarity feature correction strategy to minimize reconstruction errors and includes an efficient boundary-aware decoder to enhance object contours.Notably,we establish the first real-world aerial multispectral-RGB semantic segmentation of camouflage objects dataset,including 11 object categories.Experimental results demonstrate that RMRF-Net outperforms existing methods,achieving 17.38 FPS on the NVIDIA Jetson AGX Orin,with only a 0.96%drop in mIoU compared to the RTX 3090,showing its practical applicability in multimodal remote sensing.
文摘A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13% at small training samples and the weaknesses of the conventional methods are overcome.
基金supported by the National Natural Science Foundation of China(61172127)the Natural Science Foundation of Anhui Province(1408085MF121)
文摘Removal of cloud cover on the satellite remote sensing image can effectively improve the availability of remote sensing images. For thin cloud cover, support vector value contourlet transform is used to achieve multi-scale decomposition of the area of thin cloud cover on remote sensing images. Through enhancing coefficients of high frequency and suppressing coefficients of low frequency, the thin cloud is removed. For thick cloud cover, if the areas of thick cloud cover on multi-source or multi-temporal remote sensing images do not overlap, the multi-output support vector regression learning method is used to remove this kind of thick clouds. If the thick cloud cover areas overlap, by using the multi-output learning of the surrounding areas to predict the surface features of the overlapped thick cloud cover areas, this kind of thick cloud is removed. Experimental results show that the proposed cloud removal method can effectively solve the problems of the cloud overlapping and radiation difference among multi-source images. The cloud removal image is clear and smooth.
基金supported by the National Natural Science Foundation of China (61702528,61806212)。
文摘In the field of satellite imagery, remote sensing image captioning(RSIC) is a hot topic with the challenge of overfitting and difficulty of image and text alignment. To address these issues, this paper proposes a vision-language aligning paradigm for RSIC to jointly represent vision and language. First, a new RSIC dataset DIOR-Captions is built for augmenting object detection in optical remote(DIOR) sensing images dataset with manually annotated Chinese and English contents. Second, a Vision-Language aligning model with Cross-modal Attention(VLCA) is presented to generate accurate and abundant bilingual descriptions for remote sensing images. Third, a crossmodal learning network is introduced to address the problem of visual-lingual alignment. Notably, VLCA is also applied to end-toend Chinese captions generation by using the pre-training language model of Chinese. The experiments are carried out with various baselines to validate VLCA on the proposed dataset. The results demonstrate that the proposed algorithm is more descriptive and informative than existing algorithms in producing captions.
基金supported by the National Natural Science Foundation of China (62201438,61772397,12005169)the Basic Research Program of Natural Sciences of Shaanxi Province (2021JC-23)+2 种基金Yulin Science and Technology Bureau Science and Technology Development Special Project (CXY-2020-094)Shaanxi Forestry Science and Technology Innovation Key Project (SXLK2022-02-8)the Project of Shaanxi F ederation of Social Sciences (2022HZ1759)。
文摘The development of image classification is one of the most important research topics in remote sensing. The prediction accuracy depends not only on the appropriate choice of the machine learning method but also on the quality of the training datasets. However, real-world data is not perfect and often suffers from noise. This paper gives an overview of noise filtering methods. Firstly, the types of noise and the consequences of class noise on machine learning are presented. Secondly, class noise handling methods at both the data level and the algorithm level are introduced. Then ensemble-based class noise handling methods including class noise removal, correction, and noise robust ensemble learners are presented. Finally, a summary of existing data-cleaning techniques is given.
基金Project(2006BAB01A06) supported by the National Science and Technology Pillar Program Project during the 11th Five-Year Plan PeriodProject(1212010761503) supported by Land and Resources Investigation Project
文摘Based on the statistical characteristics of remote sensing data, the spatial geometric structure characteristics of spectral data and distribution of background, interference and alteration information in characteristic space were researched through the analysis of two-dimensional and three-dimensional scatter diagrams. The results indicate that the hyper-space of remote sensing multi-data aggregation belongs to low-dimensional geometric structure, i.e. hyperplane form, and anomalous point groups including alteration information usually dissociate out of hyperplane. Scatter diagrams of remote sensing data band are mainly presented as two distribution forms of single-ellipse and dual-ellipse. Clarifying the relations of three objects of background, disturbance and alteration information in remote sensing images provides an important technical thought and guidance for accurately detecting and extracting remote sensing alteration information.
基金supported by The Research Grants Council,Hong Kong:Competitive Earmarked Research Grant,No.461907
文摘Since the complication of monitoring and evaluating the problems about the transgenic expression and its impacts on the receptor in the transgenic crop breeding and other relevant evaluated works,the authors in the present work tried to assess the differences of spectral parameters of the transgenic rice in contrast with its parent group quantitatively and qualitatively,fulfilling the growth monitoring of the transgenic samples.The spectral parameters(spectral morphological characteristics and indices) chosen are highly related to internal or external stresses to the receipts,and thus could be applied as indicators of biophysical or biochemical processes changes of plant.By ASD portable field spectroradiometer with high-density probe,fine foliar spectra of 8 groups were obtained.By analyzing spectral angle and continuum removal,the spectral morphological differences and their locations of sample spectra were found which could be as auxiliary priori knowledge for quantitative analysis.By investigating spectral indices of the samples,the quantitative differences of spectra were revealed about foliar chlorophyll a+b and carotenoid content.In this study both the spectral differences between transgenic and parent groups and among transgenic groups were investigated.The results show that hyperspectral technique is promising and a helpful auxiliary tool in the study of monitoring the transgenic crop and other relevant researches.By this technique,quantitative and qualitative results of sample spectra could be provided as prior knowledge,as certain orientation,for laboratory professional advanced transgenic breeding study.
文摘Ⅰ. Introduction Over the past two decades, microwave remote sensing has evolved into a focal point in the remote sensing area. This is due to the fact that in microwave band, we can acquire physical parameters about ocean, terrain and atmosphere on all weather condition. Research and application work about the aerial passive micro wave remote sensors has been done at Changchun Institute of Geography since 1973, under the unitary planning of Academia Sinica. Microwave radiometers of six freqency bands have been developed. Numerous remote sensing experiments were carried out, and large amount of scientific data were accumulated. Recently, theoretical models have
基金Projects(41171326,40771198)supported by the National Natural Science Foundation of ChinaProject(08JJ6023)supported by the Natural Science Foundation of Hunan Province,China
文摘The components of urban surface cover are diversified,and component temperature has greater physical significance and application values in the studies on urban thermal environment.Although the multi-angle retrieval algorithm of component temperature has been matured gradually,its application in the studies on urban thermal environment is restricted due to the difficulty in acquiring urban-scale multi-angle thermal infrared data.Therefore,based on the existing multi-source multi-band remote sensing data,access to appropriate urban-scale component temperature is an urgent issue to be solved in current studies on urban thermal infrared remote sensing.Then,a retrieval algorithm of urban component temperature by multi-source multi-band remote sensing data on the basis of MODIS and Landsat TM images was proposed with expectations achieved in this work,which was finally validated by the experiment on urban images of Changsha,China.The results show that:1) Mean temperatures of impervious surface components and vegetation components are the maximum and minimum,respectively,which are in accordance with the distribution laws of actual surface temperature; 2) High-accuracy retrieval results are obtained in vegetation component temperature.Moreover,through a contrast between retrieval results and measured data,it is found that the retrieval temperature of impervious surface component has the maximum deviation from measured temperature and its deviation is greater than 1 ℃,while the deviation in vegetation component temperature is relatively low at 0.5 ℃.
文摘Sea-ice and Sea Surface Temperature in offshore seas are important terms for operational monitoring and forecasting marine environment in China. The software system of regional marine environmental application designed by author is used for realtime operational monitoring sea-ice, SST, oceanic current and colours and characters of land surface. This software system processes quantitative AVHRR data from NOAA satellite to calculate calibration coefficient, solar angle correction, earth location parameter and atmospheric attenuation correction, then SST field will be produced through calculation using special SST model, and top-quality of colour composite imagery of satellite with variable spacial resolution (1, 2 or 5km) will be produced via image processing. Inside front covor Figure 1 is colour enhanced imagery with 5km resolution of NOAA satellite in offshore
文摘Ⅰ. INTRODUCTION Changbai Mountain is situated between E127°54′-128°08′, N40°58′-42°06′ about 2700 meters above sea level. It is the typical area of the mountainous climate in the monsoon area of the temperate zone on the globe. The well reserved primeval vertical distribution of natural landscape belts and the Natural Conservation of Changbai Mountains adopted by the UNESCO′s MAB Program cause the worldwide attention of geographers. Beside the complexity of the climatic structure itself, the mechanical effection of the high mountain body also effect the climate in the eastern part of China. In the mountain area where short of meteorological observation data, the climatic study by remote sensing is favorable for discovery and representation of climatic law in large area.
文摘In 1979, the Changchun Jingyuetan Remote Sensing Study and Test Site (RSSTS)began its work, and it was formally established in 1985. The RSSTS is subordinated the Changchun Branch of Chinese Academy of Sciences and is supported by the Changchun Institute of Geography and Changchun Institute of Optics and Fine Machnics, Chinese Academy of Sciences. It is under the management of the Resource & Environment Bureau of Chinese Academy of Sciences and it is the study base of remote sensing basis and application tests in China. The RSSTS is situated in the Jingyuetan scenic spot of the suburbs of Changchun City, Jilin Province. It is located at 43°40′—43°50′N and 125°18′-125°18′E.
基金The Project supported by National National Science FoundationYing Tung Education Foundation
文摘An overall vector radiative transfer theory was developed for numerical modeling, in both active and passive microwave remote sensing. The Theory and approaches are briefly summerized.To quantitatively understand scattering and thermal emission from targets in active and passive remote sensing, we have developed an overall vector radiative transfer theory for a set of theoretical models of discrete scatterer and continuous random media for the earth terrain (wet soil, vegetation, snow, sea-ice, etc.) and atmosphere, and numerical approaches for simulation, data analysis, and parameter sensitivity test. Our numerical results favorably agreed with experimental data in microwave re mote sensing of various earth surfaces. Main approaches are briefly summerized herewith.
文摘The spontaneous burning has been lasting for thousands of years in the coal fields in the north of China. It spreads from the west (Tianshan coal field) to the east (Huolinhe coal field). Its E-W extension is up to 3750km, concentrating in N35°toN45°, its vertical depth up to 260m, and the surface temprature locally up to 270℃. Annually, it burns out 0, 250-300 million tones of coal, causing economic loss equivalent to 2-3 billion R.M.B. Yuan.It destroies coal resources and causes hazards in coal mines. In order to locate the extent and the direction in coal burning areas, the remote sensing technique has heen used and has produced an obvious benefit.
文摘Tibet Plateau is Known as "the Roof of the World" with the area of 1,220,000km^2, which is about 1/8 land area of China. Because of the high elevation, cold climate and it caused difficulties in regional economic planning and land resources management. Since 1985, the land use investigation in Tibet has been carried out, in which the basic data and thematic maps must be obtained and completed at county and township levels, in order to meet the needs of local administrations. In the investigation, remote sensing technology was comprehensively adopted. At present, the investigation in county level had been completed and the compilation is going to be carried out. Due to paying a great attention to studying on a series of key technical problems, the systematic methods of using remote sensing technology in the plateau land use investigation were formed and successfully put into application.
文摘Ⅰ The Indexes of Detecting Oil and Gas Resources The deeply buried reservoir which in a dynamic equilibrium state has a great pressure inside, and between it and earth surface there is a great difference of pressure. Therefore the hydrocarbon must spread and move vertically to the surface along the pressure gradient orientation. Hydrocarbons in the reservoir along some small rifts, cracks, joints and cleavages penetrate the overlying strata and seepage onto the surface. Thus the hydrocarbons become unvisble oil and gas signs. This process is called the phenomena of hydrocarbon microseepage of reservoir. Hydrocarbons microseepage in the process
文摘The Landsat image information has recently been widely applied to structural geology, especially to the analysis of lineaments, owing to their macroscopic, visual and comprehensive features. The images will be more effective when applied to the interpretation of active faults. Active faults are widely ditributed in China. Much attention has been paid to the study of active faults both in China and abroad. There is certain controversy concerning the implication of the term "active fault". Strictly speaking, the term should refer only to the faults that are still active in the present day. However, the term also usually refers to the faults which have been active continually or intermittently from the Quaternary (or the end of Tertiary) to the present day. We propose that the tones and the configurations of features on Landsat images are the principal keys to the interpretation of active faults. The faults, which display the most prominent