期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
随机多属性子空间的ReliefF加权邻域粗糙集与属性约简 被引量:4
1
作者 王莉 《计算机工程与应用》 CSCD 北大核心 2024年第8期69-77,共9页
属性约简是一种重要的数据降维预处理方法,然而现有的属性约简方法大多没有考虑信息系统中属性权重的信息。ReliefF算法是一种实现简单且运算效率高的属性权重评估方法,提出一种随机多属性子空间的ReliefF加权邻域粗糙集和属性约简算法... 属性约简是一种重要的数据降维预处理方法,然而现有的属性约简方法大多没有考虑信息系统中属性权重的信息。ReliefF算法是一种实现简单且运算效率高的属性权重评估方法,提出一种随机多属性子空间的ReliefF加权邻域粗糙集和属性约简算法。该方法生成了多组具有相同大小随机子空间的属性集划分,并对每组划分的随机子空间利用ReliefF算法计算得到属性的局部权重,将所有组得到的属性局部权重求取平均值,得到了信息系统每个属性最终的全局权重;基于属性权重的结果,提出一种新的加权邻域粗糙集模型,并证明了相关理论和性质;在该模型的基础上通过加权邻域依赖度提出一种信息系统的属性约简算法。在公开数据集上的属性约简实验结果表明,所提出的属性约简算法比已有的同类型算法整体上具有更优的约简性能。 展开更多
关键词 属性约简 relieff算法 随机子空间 加权邻域 邻域粗糙集模型
在线阅读 下载PDF
基于ReliefF算法与遗传算法的肌电信号特征选择 被引量:18
2
作者 何涛 胡洁 +1 位作者 夏鹏 谷朝臣 《上海交通大学学报》 EI CAS CSCD 北大核心 2016年第2期204-208,共5页
针对肌电信号特征维数高、运算效率低等问题,提出了一种基于ReliefF算法与遗传算法(GA)相结合的肌电信号特征选择方法.分析了肌电信号的特征,运用小波分析对肌电信号进行特征提取,采用ReliefF算法评估所提取的高维特征信号的权值,以选... 针对肌电信号特征维数高、运算效率低等问题,提出了一种基于ReliefF算法与遗传算法(GA)相结合的肌电信号特征选择方法.分析了肌电信号的特征,运用小波分析对肌电信号进行特征提取,采用ReliefF算法评估所提取的高维特征信号的权值,以选出对分类效果影响显著(权值较大)的特征子集,采用GA进一步筛选出分类效果最佳的特征子集,并对比分析了基于ReliefFGA-Wrapper算法与全局搜索算法对肌电信号处理的时间和分类效果.结果表明,所提出的方法能够提高运算效率并具有很好的分类效果. 展开更多
关键词 肌电信号 relieff算法 遗传算法 特征选择
在线阅读 下载PDF
改进的ReliefF算法用于雷达距离像目标识别 被引量:13
3
作者 廖阔 付建胜 杨万麟 《电子测量与仪器学报》 CSCD 2010年第9期831-836,共6页
提出了一种改进的ReliefF算法,并将其用于雷达高分辨距离像(high resolution range profile,HRRP)目标识别。与传统ReliefF算法相比,新算法通过在每类目标中等距离间隔抽取相同数量样本的方式进行权值累积,降低了样本数量及分布差异等... 提出了一种改进的ReliefF算法,并将其用于雷达高分辨距离像(high resolution range profile,HRRP)目标识别。与传统ReliefF算法相比,新算法通过在每类目标中等距离间隔抽取相同数量样本的方式进行权值累积,降低了样本数量及分布差异等因素对特征权值的影响,得到了更稳定有效的特征权值。利用此权值不但可降低特征向量维数,并可对最小距离分类器加权,提高目标识别率。最后,对5种不同飞机实测数据的识别结果表明本算法可达到83%的平均识别率。 展开更多
关键词 雷达目标识别 高分辨距离像 relieff算法 特征权值
在线阅读 下载PDF
基于改进ReliefF算法的主成分特征提取方法 被引量:3
4
作者 吴水秀 曾庆鹏 王明文 《计算机工程》 CAS CSCD 北大核心 2008年第18期51-52,55,共3页
计算信息特征(属性)的权重问题在信息分类及模式匹配中是一个研究热点。该文提出一种基于改进ReliefF算法的主成分特征提取方法,利用此算法删除原始特征中与分类不相关的特征,并对数据进行归一化处理和主成分提取。实验将34个特征变量... 计算信息特征(属性)的权重问题在信息分类及模式匹配中是一个研究热点。该文提出一种基于改进ReliefF算法的主成分特征提取方法,利用此算法删除原始特征中与分类不相关的特征,并对数据进行归一化处理和主成分提取。实验将34个特征变量降维成10个主成分,大大减轻后续的分类器工作量,提高分类器的分类精度。 展开更多
关键词 relieff算法 特征提取 主成分分析
在线阅读 下载PDF
基于ReliefF的主元挑选算法在过程监控中的应用 被引量:5
5
作者 陶阳 王帆 +1 位作者 侍洪波 宋冰 《化工学报》 EI CAS CSCD 北大核心 2017年第4期1525-1532,共8页
传统的主成分分析(principal component analysis,PCA)算法选取包含大部分方差信息的成分作为主元,并将其应用到过程监控中。但是故障信息不一定会投影到方差较大的成分上,使用方差贡献度挑选主元会导致严重的信息丢失和监控效果的恶化... 传统的主成分分析(principal component analysis,PCA)算法选取包含大部分方差信息的成分作为主元,并将其应用到过程监控中。但是故障信息不一定会投影到方差较大的成分上,使用方差贡献度挑选主元会导致严重的信息丢失和监控效果的恶化。因此使用ReliefF-PCA算法,其中ReliefF算法从故障角度出发,挑选出在区分正常样本和故障样本上权重更高,效果相对更好的成分作为主元。这样挑选出的主元避免了传统PCA算法在主元挑选过程中出现的主观性、盲目性以及重要信息的丢失。ReliefF-PCA算法在过程监控中主要有两个优势,第1,监控效果更好;第2,对原始数据降维效果更好。随后,基于ReliefF-PCA算法,提出一种加权的故障变量贡献图方法。最后,通过Tennessee Eastman(TE)仿真实验测试,ReliefF-PCA算法达到了预期效果。 展开更多
关键词 过程系统 过程控制 主元分析 relieff-PCA算法 故障检测 故障定位
在线阅读 下载PDF
基于ReliefF算法和相关度计算结合的故障特征降维方法及其应用 被引量:12
6
作者 姜万录 王友荣 +1 位作者 王振威 朱勇 《液压与气动》 北大核心 2015年第12期18-24,共7页
在对旋转机械进行故障诊断时,通常要从时域、频域或时频域提取故障特征参数,组成原始的故障特征向量,然而在众多的故障特征当中并不是每个特征对于故障分类都是敏感且有效的。为此,本研究提出了基于Relief F算法和相关度计算结合的故障... 在对旋转机械进行故障诊断时,通常要从时域、频域或时频域提取故障特征参数,组成原始的故障特征向量,然而在众多的故障特征当中并不是每个特征对于故障分类都是敏感且有效的。为此,本研究提出了基于Relief F算法和相关度计算结合的故障特征降维方法。采用Relief F加权特征选择算法对原始各特征的分类能力进行评价,选择出分类能力较强的特征;再通过特征相关度算法剔除其中分类能力相近的冗余特征,将剩余的分类能力较强的特征组成最终的降维特征向量用于故障分类和诊断,实现原始特征的降维。通过液压泵和滚动轴承的故障诊断实验,并与传统的主元分析(PCA)方法对比,结果表明该方法能够用较少的降维后的信号特征获得更高的故障正确识别率。 展开更多
关键词 旋转机械 故障诊断 relieff加权特征选择算法 主元分析
在线阅读 下载PDF
基于FPCA和ReliefF算法的图像特征降维 被引量:1
7
作者 齐迎春 孙挺 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第5期975-980,共6页
针对传统图像特征降维方法计算量大、无法去除冗余信息、未考虑相关性等缺陷,提出一种结合快速主成分分析(FPCA)和ReliefF算法的图像特征降维方法.该方法先利用FPCA算法对样本数据进行初次降维,去除样本中的冗余信息;再利用ReliefF算法... 针对传统图像特征降维方法计算量大、无法去除冗余信息、未考虑相关性等缺陷,提出一种结合快速主成分分析(FPCA)和ReliefF算法的图像特征降维方法.该方法先利用FPCA算法对样本数据进行初次降维,去除样本中的冗余信息;再利用ReliefF算法计算样本特征的分类权重,根据权重对特征进行组合优化.在算法实现过程中,采用递归排除策略,进一步提升了算法特征寻优能力.仿真实验表明,利用本文算法优选出的图像特征,可较好地提高聚类结果,适合实际工程的应用. 展开更多
关键词 图像特征 降维 快速主成分分析 relieff算法
在线阅读 下载PDF
改进ReliefF算法在水泥工艺故障诊断中的应用 被引量:1
8
作者 石宇强 董学文 陈柏志 《机械设计》 CSCD 北大核心 2022年第2期40-45,共6页
针对ReliefF算法在迭代过程中受样本选取随机性、随机样本可能带有干扰及类别先验概率等因素影响较大的问题,提出了一种无需类别先验概率,且可以在所有类别的样本核心圈进行迭代的改进ReliefF算法。在标准数据集上的试验结果表明,改进Re... 针对ReliefF算法在迭代过程中受样本选取随机性、随机样本可能带有干扰及类别先验概率等因素影响较大的问题,提出了一种无需类别先验概率,且可以在所有类别的样本核心圈进行迭代的改进ReliefF算法。在标准数据集上的试验结果表明,改进ReliefF算法克服了传统ReliefF算法容易受迭代次数、最近邻样本数影响的问题,且算法的特征选择结果稳定,在选取特征维数相同的情况下,改进ReliefF算法选取特征的分类效果较传统ReliefF算法也有所提高。最后,将改进ReliefF算法运用于水泥工艺故障诊断,运用该算法提取故障特征,以支持向量机作为分类器,实现了故障的准确识别。 展开更多
关键词 特征选择 relieff算法 支持向量机 故障诊断
在线阅读 下载PDF
基于ReliefF特征加权的人工蜂群聚类算法 被引量:1
9
作者 龙金辉 叶阳东 《火力与指挥控制》 CSCD 北大核心 2018年第1期52-56,61,共6页
针对模糊聚类算法对最优聚类中心的搜索能力偏弱,以及没有度量样本数据各维特征属性对聚类结果贡献度的问题,提出了一种ReliefF特征加权的人工蜂群聚类算法。算法利用人工蜂群算法搜索最优聚类中心,使用ReliefF算法度量数据各维特征权重... 针对模糊聚类算法对最优聚类中心的搜索能力偏弱,以及没有度量样本数据各维特征属性对聚类结果贡献度的问题,提出了一种ReliefF特征加权的人工蜂群聚类算法。算法利用人工蜂群算法搜索最优聚类中心,使用ReliefF算法度量数据各维特征权重,分析了各维特征对聚类的不同影响,减弱冗余特征对聚类的干扰,增强有效特征对聚类的贡献,对加权变换后的数据样本进行聚类以提高聚类效果。在UCI数据集上的对比实验结果表明,此算法具有很好的综合性能。 展开更多
关键词 人工蜂群算法 模糊聚类算法 relieff 特征加权
在线阅读 下载PDF
联合对称不确定性ReliefF算法的PolSAR影像分类
10
作者 张继超 邹勇 +2 位作者 宋伟东 张永红 李建飞 《遥感信息》 CSCD 北大核心 2021年第4期20-27,共8页
针对在PolSAR影像分类中极易产生分类精度随着特征数增加不会持续增加,甚至还会降低的问题,提出一种基于对称不确定性ReliefF算法的分类方法。首先,在传统过滤式的ReliefF算法基础上引入对称不确定性评估函数,淘汰对分类贡献小的特征及... 针对在PolSAR影像分类中极易产生分类精度随着特征数增加不会持续增加,甚至还会降低的问题,提出一种基于对称不确定性ReliefF算法的分类方法。首先,在传统过滤式的ReliefF算法基础上引入对称不确定性评估函数,淘汰对分类贡献小的特征及属性;然后,利用封装式CART算法对剩余特征作进一步挑选,并根据得到的特征子集进行分类。将其与Wishart监督分类、未进行特征选择的分类和仅利用ReliefF算法进行特征属性选择的分类方法进行比较,以GF-3和Radarsat-2影像为例进行实验。结果表明,该方法各项指标均优于其他对比实验,并且大幅度节约时间成本。 展开更多
关键词 极化分解 对称不确定性 relieff算法 特征选择 CART分类
在线阅读 下载PDF
基于改进ReliefF算法的哑铃动作识别 被引量:2
11
作者 刘国平 王南星 +2 位作者 周毅 汪文博 唐慜越 《科学技术与工程》 北大核心 2019年第32期219-224,共6页
为了实现哑铃动作分类识别的目标,在哑铃上加装惯性传感器模块,通过采集哑铃锻炼过程中的运动信号,经信号标准化、滤波、基于初始静态量周期分割预处理后,提取侧平举、前平举、反握弯举、锤式弯举、弯举5种哑铃动作的特征向量,使用改进... 为了实现哑铃动作分类识别的目标,在哑铃上加装惯性传感器模块,通过采集哑铃锻炼过程中的运动信号,经信号标准化、滤波、基于初始静态量周期分割预处理后,提取侧平举、前平举、反握弯举、锤式弯举、弯举5种哑铃动作的特征向量,使用改进的Relief F特征选择算法,选择最优特征向量,采用基于平衡决策树的支持向量机对不同的哑铃动作进行分类识别。通过在实验室自主研发的哑铃动作识别系统上进行测试,结果表明:系统能够在单个哑铃动作周期内对哑铃动作进行识别,且识别率可达90%以上,为提供更加个性化的哑铃动作指导奠定基础。 展开更多
关键词 哑铃 动作分类识别 初始静态量周期分割 改进的relieff特征选择算法 支持向量机
在线阅读 下载PDF
基于挤压激励卷积神经网络的配电网拓扑辨识
12
作者 余向前 喻见 +2 位作者 王婷婷 李亚昕 董晓阳 《电网与清洁能源》 北大核心 2025年第8期83-89,共7页
针对配电网拓扑变化频繁、拓扑辨识准确率低的问题,提出一种基于挤压激励模块和卷积神经网络的配电网拓扑辨识模型。通过ReliefF算法进行数据降维和特征选择,筛选出对拓扑辨识最有效的量测数据,并利用卷积神经网络获取量测数据与拓扑结... 针对配电网拓扑变化频繁、拓扑辨识准确率低的问题,提出一种基于挤压激励模块和卷积神经网络的配电网拓扑辨识模型。通过ReliefF算法进行数据降维和特征选择,筛选出对拓扑辨识最有效的量测数据,并利用卷积神经网络获取量测数据与拓扑结构间的映射关系;为提高模型的辨识能力,在卷积神经网络中嵌入挤压激励模块,以增强模型对拓扑辨识有效信息的关注;以IEEE 33节点配电网和甘肃某地区实际配电网为实例,验证了所提方法在配电网拓扑辨识方面具有显著的优越性和良好的泛化能力。 展开更多
关键词 配电网 拓扑辨识 卷积神经网络 挤压激励 relieff算法
在线阅读 下载PDF
高光谱图像分类的ReliefF-RFE特征选择算法构建与应用 被引量:16
13
作者 项颂阳 许章华 +5 位作者 张艺伟 张琦 周鑫 俞辉 李彬 李一帆 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2022年第10期3283-3290,共8页
高光谱图像具有波段连续、维数高、数据量大、相邻波段相关性强的特点,可为地物分类提供更为丰富的细节信息。但是,数据中存在大量冗余信息与噪声,在图像分类中如直接利用其所有波段特征而不进行有效分析与选择,将会导致较低的计算效率... 高光谱图像具有波段连续、维数高、数据量大、相邻波段相关性强的特点,可为地物分类提供更为丰富的细节信息。但是,数据中存在大量冗余信息与噪声,在图像分类中如直接利用其所有波段特征而不进行有效分析与选择,将会导致较低的计算效率和较高的计算复杂度,分类精度亦可能随着波段维数增加而出现先增后减的“休斯(Hughes)现象”。为快速地从高达数十个甚至数百个波段的高光谱图像中提取出具有较好识别能力的特征子集,从而避免“维度灾难”,将过滤式ReliefF算法和封装式特征递归消除算法(RFE)相结合,构建了ReliefF-RFE特征选择算法,可用于高光谱图像分类的特征选择。该算法根据权重阈值,利用ReliefF算法快速剔除大量无关特征,缩小并优化特征子集的范围;利用RFE算法进一步搜索最优特征子集,将缩小范围后的特征子集中与分类器关联性小、冗余的特征进行递归筛选,进而得到分类性能最佳的特征子集。采用Indian pines数据集、Salinas-A数据集与KSC数据集等3个标准数据集作为实验数据,将ReliefF-RFE算法的应用效果与ReliefF和RFE算法进行对比。结果显示,在3个数据集中,应用ReliefF-RFE算法的高光谱图像分类平均总体精度(OA)为92.94%、F-measure为92.81%,Kappa系数为91.94%;ReliefF-RFE算法的平均特征维数是ReliefF算法的37%,而平均运算时间则是RFE算法的75%。由此表明,ReliefF-RFE算法能够在保证分类精度的同时,克服过滤式ReliefF算法无法有效减小特征之间冗余以及封装式RFE算法时间复杂度较高的缺陷,具有更为均衡的综合性能,适用于高光谱图像分类的特征选择。 展开更多
关键词 高光谱图像 特征选择 relieff算法 RFE算法 relieff-RFE算法
在线阅读 下载PDF
基于ReliefF的入侵特征选择方法 被引量:5
14
作者 杨志伟 努尔布力 +1 位作者 贾雪 胡亮 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第3期505-510,共6页
基于ReliefF的入侵特征选择方法,结合入侵检测数据集类内紧密和类外差距大的特点,通过对入侵特征权重计算的优化,提出一种改进算法:Re-ReliefF算法,解决了网络安全领域数据维度导致处理效率较低的问题.实验结果表明,在安全测试数据集下... 基于ReliefF的入侵特征选择方法,结合入侵检测数据集类内紧密和类外差距大的特点,通过对入侵特征权重计算的优化,提出一种改进算法:Re-ReliefF算法,解决了网络安全领域数据维度导致处理效率较低的问题.实验结果表明,在安全测试数据集下,改进算法相对传统算法在性能上有一定提高. 展开更多
关键词 入侵检测 特征选择 relieff算法
在线阅读 下载PDF
基于ReliefF和改进乌鸦搜索优化的并行入侵检测方法 被引量:10
15
作者 马超 《计算机应用研究》 CSCD 北大核心 2019年第10期3063-3068,共6页
网络数据量的增加导致计算复杂度和时间复杂度增加,为提高网络入侵检测的精度与速度,提出一种新的入侵检测方法RICSA-KELM。首先采用ReliefF过滤法除去无关特征和噪声,降低特征维数;然后基于改进乌鸦搜索算法(ICSA,采用封装法)进行最优... 网络数据量的增加导致计算复杂度和时间复杂度增加,为提高网络入侵检测的精度与速度,提出一种新的入侵检测方法RICSA-KELM。首先采用ReliefF过滤法除去无关特征和噪声,降低特征维数;然后基于改进乌鸦搜索算法(ICSA,采用封装法)进行最优特征子集选择,并同步实现核极限学习机(KELM)分类器的参数优化。设计的线性加权目标函数在考虑最大分类精度的同时,尽可能减少误报率以及特征子集数量。此外,提出了基于多核平台的多线程并行计算方法,进一步优化模型运算方式,提高了计算效率。实验采用KDD99和UNSW-NB15数据集对RICSA-KELM性能进行测试和分析。实验结果表明,提出的模型优于SVM、ELM、KNN等方法,检测准确率高、检测效率快、误报率低,是一种有效的网络入侵检测方法。 展开更多
关键词 乌鸦搜索算法 入侵检测 并行计算 核极限学习机 relieff
在线阅读 下载PDF
基于最大信息系数的ReliefF和支持向量机交互的自动特征选择算法 被引量:6
16
作者 葛倩 张光斌 张小凤 《计算机应用》 CSCD 北大核心 2022年第10期3046-3053,共8页
为解决特征选择ReliefF算法在利用欧氏距离选取近邻样本过程中,算法稳定性差以及选取的特征子集分类准确率低的问题,提出了一种利用最大信息系数(MIC)作为近邻样本选择标准的MICReliefF算法;同时,以支持向量机(SVM)模型的分类准确率作... 为解决特征选择ReliefF算法在利用欧氏距离选取近邻样本过程中,算法稳定性差以及选取的特征子集分类准确率低的问题,提出了一种利用最大信息系数(MIC)作为近邻样本选择标准的MICReliefF算法;同时,以支持向量机(SVM)模型的分类准确率作为评价指标,并多次寻优,以自动确定其最优特征子集,从而实现MICReliefF算法与分类模型的交互优化,即MICReliefF-SVM自动特征选择算法。在多个UCI公开数据集上对MICReliefF-SVM算法的性能进行了验证。实验结果表明,MICReliefF-SVM自动特征选择算法不仅可以筛除更多的冗余特征,而且可以选择出具有良好稳定性和泛化能力的特征子集。与随机森林(RF)、最大相关最小冗余(mRMR)、相关性特征选择(CFS)等经典的特征选择算法相比,MICReliefF-SVM算法具有更高的分类准确率。 展开更多
关键词 特征选择 最大信息系数 relieff算法 支持向量机 极限学习机
在线阅读 下载PDF
ReliefF与QPSO结合的故障特征选择算法 被引量:12
17
作者 薛瑞 赵荣珍 《振动与冲击》 EI CSCD 北大核心 2020年第11期171-176,208,共7页
为提高故障数据集的分类精度,将ReliefF算法与量子粒子群算法(Quantum Particle Swarm Optimization,QPSO)进行结合,提出一种能够降低故障数据集维度的敏感故障特征选择方法。首先,在对经滤波消噪后的故障信号进行多域量化特征提取基础... 为提高故障数据集的分类精度,将ReliefF算法与量子粒子群算法(Quantum Particle Swarm Optimization,QPSO)进行结合,提出一种能够降低故障数据集维度的敏感故障特征选择方法。首先,在对经滤波消噪后的故障信号进行多域量化特征提取基础上,设定时域与频域特征、经小波包分解得到的各频带能量特征作为描述转子系统故障状态的初始故障特征集,并用转子系统的典型故障模拟信号集合得到了一种原始的故障数据集。随后,用ReliefF算法通过迭代计算得到的权值对故障数据集各特征向量进行加权、并设定阈值剔除不相关特征,据此实现了对原始故障数据集各特征的第一次筛选。最后,引入量子粒子群算法(QPSO)对特征集合进行二次筛选,剔除不利于实施分类的冗余特征并同时实现优化支持向量机的参数,通过处理得到了一种精简的最优特征子集和最合适的一组支持向量机参数。用得到的原始故障数据集对所建立的方法性能进行了计算验证。结果表明,该方法可有效地筛选出规模较小且故障模式辨识度高的低维故障数据集,它可显著提高故障分类器的辨识准确率。 展开更多
关键词 特征选择 relieff算法 不相关特征量子 粒子群算法 支持向量机
在线阅读 下载PDF
基于ReliefF和蚁群算法的特征基因选择方法 被引量:11
18
作者 吴辰文 李晨阳 +1 位作者 郭叔瑾 闫光辉 《计算机应用研究》 CSCD 北大核心 2018年第9期2610-2613,共4页
针对高维小样本的DNA微阵列数据多分类问题,提出一种基于ReliefF和蚁群算法的特征基因选择方法(ReliefF and ant colony optimization,Re FACO)。该方法首先采用ReliefF算法评估特征权重,根据阈值筛选出无关基因;然后引入改进的蚁群算法... 针对高维小样本的DNA微阵列数据多分类问题,提出一种基于ReliefF和蚁群算法的特征基因选择方法(ReliefF and ant colony optimization,Re FACO)。该方法首先采用ReliefF算法评估特征权重,根据阈值筛选出无关基因;然后引入改进的蚁群算法,在迭代改进的过程中寻找最优基因子集;最后利用经典分类算法对维数约简后的数据分类识别。经实验证明,该方法可有效地剔除无关和冗余基因,并利用较少特征基因达到较高多分类效果。 展开更多
关键词 DNA微阵列数据 relieff算法 蚁群算法 特征选择
在线阅读 下载PDF
ReliefF-MFO多标签特征选择算法 被引量:9
19
作者 何牧宇 周晖 《计算机工程与设计》 北大核心 2019年第12期3469-3473,共5页
为解决启发式算法在多标签特征选择中可以达到较好效果但效率很低的问题,提出一种基于启发式算法的混合特征选择算法。使用ReliefF方法去除不相关特征,采用MFO算法进行特征子集寻优,提高分类器性能的同时达到较高的效率。将所提方法应... 为解决启发式算法在多标签特征选择中可以达到较好效果但效率很低的问题,提出一种基于启发式算法的混合特征选择算法。使用ReliefF方法去除不相关特征,采用MFO算法进行特征子集寻优,提高分类器性能的同时达到较高的效率。将所提方法应用于多个典型多标签数据集分类问题并与现有启发式特征选择方法进行对比,实验结果表明了所提算法的有效性。 展开更多
关键词 多标签分类 多标签特征选择 混合式特征选择 飞蛾火焰优化算法 relieff算法
在线阅读 下载PDF
基于ReliefF的层次分类在线流特征选择算法 被引量:11
20
作者 张小清 王晨曦 +1 位作者 吕彦 林耀进 《计算机应用》 CSCD 北大核心 2022年第3期688-694,共7页
在图像标注、疾病诊断等实际分类任务中,数据标记空间的类别通常存在着层次化结构关系,且伴随着特征的高维性。许多层次特征选择算法因不同的实际任务需求而提出,但这些已有的特征选择算法忽略了特征空间的未知性和不确定性。针对上述问... 在图像标注、疾病诊断等实际分类任务中,数据标记空间的类别通常存在着层次化结构关系,且伴随着特征的高维性。许多层次特征选择算法因不同的实际任务需求而提出,但这些已有的特征选择算法忽略了特征空间的未知性和不确定性。针对上述问题,提出一种基于ReliefF的面向层次分类学习的在线流特征选择算法OH_ReliefF。首先将类别之间的层次关系融入ReliefF算法中,定义一种新的面向层次化数据的特征权重计算算法HF_ReliefF;其次,利用特征对决策属性的划分能力动态选择重要特征;最后,基于特征之间的独立性对特征进行动态冗余分析。实验结果表明,与五种先进的在线流特征选择算法作对比,OH_ReliefF算法在K最邻近(KNN)分类器和拉格朗日支持向量机(LSVM)分类器的各个评价指标中都取得较优的结果,准确率最少提高7个百分点。 展开更多
关键词 特征选择 在线流特征选择 层次分类 relieff算法 兄弟策略
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部