In this paper,an integrated guidance and control method based on an adaptive path-following controller is proposed to control a spin-stabilized projectile with only translational motion information under the constrain...In this paper,an integrated guidance and control method based on an adaptive path-following controller is proposed to control a spin-stabilized projectile with only translational motion information under the constraint of an actuator,uncertainties in aerodynamic parameters and measurements,and control system complexity.Owing to the fairly high rotation speed,the dynamic model of this missile is strongly nonlinear,uncertain and coupled in pitch,yaw and roll channels.A theoretical equivalent resultant force and uncertainty compensation method are comprehensively used to realize decoupling of pitch and yaw.In response to the strong nonlinear and time-varying characteristics of the dynamic system,the quasi-linear model whose parameters are obtained by interpolation of points selected as the segmentation points in the trajectory envelope,is used for calculation in each step.To cope with the system uncertainty caused by model approximation,parameter uncertainty and ballistic interference,an extended state estimator is used to compensate the output feedback according to the test ballistic angle.In order to improve the tracking efficiency and ensure the tracking error convergence with only translational motion information,the virtual guide point,whose derivative is deduced according to the Lyapunov principle,is calculated in real time according to the projection relationship between the real-time position and the reference trajectory,and a virtual line-of-sight angle and the backstepping method are used for the design of the guidance and control system.In order to avoid the influence of control input saturation on the guidance and control performance due to the actuator limitation and improve the robustness of the system,an anti-saturation compensator is designed according to the two-step method.The feasibility and effectiveness of the path-following controller is verified through closed-loop flight simulations with measurement,control,and condition uncertainties.The results indicate that the designed controller can converge to the reference path and evidently decrease the distance between the impact point and target under different uncertainties.展开更多
The present day weapon technology demands novel energetic materials that exhibit simultaneous high explosive yield and reduced sensitivity.This article demonstrates application of spray evaporation to prepare reduced ...The present day weapon technology demands novel energetic materials that exhibit simultaneous high explosive yield and reduced sensitivity.This article demonstrates application of spray evaporation to prepare reduced sensitive co-crystals of high performance nitramine explosives like HMX and CL-20 with a relatively less insensitive explosive 1,1-diamino-2,2-dinitroethylene or FOX-7.Stronger intermolecurar hydrogen bonding in FOX-7 is responsible for limited solubility in nost of o rganic solvents.Large solubility differences of FOX-7 with HMX and CL-20 restricts ifs co-crystallization through classical methods that yields thermodynamically favorable product.Spray flash evaporation,a kinetic crystallization method,has been therefore adopted and could successfully produce CL-20/FOX-7(2:1) and HMX/FQX-7(4:1) co-crystals.The fine powdered materials obtained were characterized by SEM,powder XRD,Raman spectro scopy,DSC-TGA etc.Multipoint Raman spectra showed consistent occurrence of spectral features indicating stoichiometric co-existence of ingredients in the crystal lattices.DSC analysis showed absence of all thermally assisted solidsolid phase transformation in the co-crystals as they were observed in pristine materials.The thermal stability calculated in terms of activation barrier fordecomposition,revealed the CL-20/FOX-7 co-crystal to be interlediately stable on comparison to their constituents while,the HMX/FOX-7 co-crystal is more stable.Compared to pure HMX and CL-20,both the co-crystals have shown higher insensitivity to impact force,suggesting them to be suitable for future generation insensitive munitions.展开更多
A reduced graphene oxide/Ni(OH)2 composite with excellent supercapacitive performance was synthesized by a facile hydrothermal route without organic solvents or templates used.XRD and SEM results reveal that the nicke...A reduced graphene oxide/Ni(OH)2 composite with excellent supercapacitive performance was synthesized by a facile hydrothermal route without organic solvents or templates used.XRD and SEM results reveal that the nickel hydroxide,which crystallizes into hexagonal β-Ni(OH)2 nanoflakes with a diameter less than 200 nm and a thickness of about 10 nm,is well combined with the reduced graphene oxide sheets.Electrochemical performance of the synthesized composite as an electrode material was investigated by cyclic voltammetry,electrochemical impedance spectroscopy and galvanostatic charge/discharge measurements.Its specific capacitance is determined to be 1672 F/g at a scan rate of 2 mV/s,and 696 F/g at a high scan rate of 50 mV/s.After 2000 cycles at a current density of 10 A/g,the composite exhibits a specific capacitance of 969 F/g,retaining about 86% of its initial capacitance.The composite delivers a high energy density of 83.6 W·h/kg at a power density of 1.0 kW/kg.The excellent supercapacitive performance along with the easy synthesis method allows the synthesized composite to be promising for supercapacitor applications.展开更多
For a class of systems with unmodeled dynamics, robust adaptive stabilization problemis considered in this paper. Firstly, by a series of coordinate changes, the original system is re-parameterized. Then, by introduci...For a class of systems with unmodeled dynamics, robust adaptive stabilization problemis considered in this paper. Firstly, by a series of coordinate changes, the original system is re-parameterized. Then, by introducing a reduced-order observer, an error system is obtained. Basedon the system, a reduced-order adaptive backstepping controller design scheme is given. It is provedthat all the signals in the adaptive control system are globally uniformly bounded, and the regulationerror converges to zero asymptotically. Due to the order deduction of the controller, the design schemein this paper has more practical values. A simulation example further demonstrates the e?ciency ofthe control scheme.展开更多
In order to slove the large-scale nonlinear programming (NLP) problems efficiently, an efficient optimization algorithm based on reduced sequential quadratic programming (rSQP) and automatic differentiation (AD)...In order to slove the large-scale nonlinear programming (NLP) problems efficiently, an efficient optimization algorithm based on reduced sequential quadratic programming (rSQP) and automatic differentiation (AD) is presented in this paper. With the characteristics of sparseness, relatively low degrees of freedom and equality constraints utilized, the nonlinear programming problem is solved by improved rSQP solver. In the solving process, AD technology is used to obtain accurate gradient information. The numerical results show that the combined algorithm, which is suitable for large-scale process optimization problems, can calculate more efficiently than rSQP itself.展开更多
OBJECTIVE To assess whether N-acetylcysteine(NAC)and reduced glutathione(GSH)are effective in reversing flupirtine-induced hepatotoxicity and whether they have other beneficial effects when combined with flupirtine.ME...OBJECTIVE To assess whether N-acetylcysteine(NAC)and reduced glutathione(GSH)are effective in reversing flupirtine-induced hepatotoxicity and whether they have other beneficial effects when combined with flupirtine.METHODS The analgesic effects of NAC and flupirtine were first evaluated in carrageenaninduced inflammatory pain and paclitaxel-induced neuropathic pain.The combination subthreshold⁃ing approach was then used to determine whether the combination of NAC and flupirtine produced synergistic analgesic effects.Hepatotoxicity markers and histopathological examination of the liver were used to assess the efficacy of NAC and GSH in reversing flupirtine-induced hepato⁃toxicity.Finally,the effect of GSH on the safe range of flupirtine was assessed in an acute tox⁃icity assay.RESULTS Flupirtine and NAC pro⁃duced dose-dependent antiallodynic effects evoked by carrageenan and paclitaxel in mice.In the above model,the combination of NAC and flupirtine produced an unexpected synergistic analgesic effect.There were no significant differ⁃ences observed in the hepatotoxicity markers and liver histopathology between the experimen⁃tal group and the control group under NAC and GSH treatment.Finally,GSH(200 mg·kg^(-1))expanded the therapeutic index of flupirtine by 1.77 times.CONCLUSION NAC and GSH are effective in preventing liver damage caused by long-term flupirtine use,which provides a solu⁃tion for the safe and effective treatment of chronic pain with flupirtine.In addition,the other benefi⁃cial effects of NAC and GSH when combined with flupirtine may provide the basis for the devel⁃opment of a new therapy with minimal sideeffects and good efficacy.展开更多
Low power and real time very large scale integration (VLSI) architectures of motion estimation (ME) algorithms for mobile devices and applications are presented. The power reduction is achieved by devising a novel...Low power and real time very large scale integration (VLSI) architectures of motion estimation (ME) algorithms for mobile devices and applications are presented. The power reduction is achieved by devising a novel correction recovery mechanism based on algorithms which allow the use of reduced bit sum of absolute difference (RBSAD) metric for calculating matching error and conversion to full resolution sum of absolute difference (SAD) metric whenever necessary. Parallel and pipelined architectures for high throughput of full search ME corresponding to both the full resolution SAD and the generalized RBSAD algorithm are synthe- sized using Xilinx Synthesis Tools (XST), where the ME designs based on reduced bit (RB) algorithms demonstrate the reduction in power consumption up to 45% and/or the reduction in area up to 38%.展开更多
To address the issue of rule premise combination explosion in the construction of the traditional complete conjunctive belief rule base(BRB),this paper introduces an orthogonal design method to reduce the conjunctive ...To address the issue of rule premise combination explosion in the construction of the traditional complete conjunctive belief rule base(BRB),this paper introduces an orthogonal design method to reduce the conjunctive BRB.The reasoning method based on reduced conjunctive BRB is designed with the help of the conversion technology from conjunctive BRB to disjunctive BRB.Finally,the operational mission effectiveness evaluation is taken as an example to verify the proposed method.The results show that the method proposed in this paper is feasible and effective.展开更多
Based on the optimal fusion algorithm weighted by matrices in the linear minimum variance (LMV) sense, a distributed full-order optimal fusion Kalman filter (DFFKF) is given for discrete-time stochastic singular syste...Based on the optimal fusion algorithm weighted by matrices in the linear minimum variance (LMV) sense, a distributed full-order optimal fusion Kalman filter (DFFKF) is given for discrete-time stochastic singular systems with multiple sensors, which involves the inverse of a high-dimension matrix to compute matrix weights. To reduce the computational burden, a distributed reduced-order fusion Kalman filter (DRFKF) is presented, which involves in parallel the inverses of two relatively low-dimension matrices to compute matrix weights. A simulation example shows the effectiveness.展开更多
This paper aims at solving the state filtering problem for linear systems with state constraints. Three classes of typical state constraints, i.e., linear equality, quadratic equality and inequality, are discussed. By...This paper aims at solving the state filtering problem for linear systems with state constraints. Three classes of typical state constraints, i.e., linear equality, quadratic equality and inequality, are discussed. By using the linear relationships among different state variables, a reduced-order Kalman filter is derived for the system with linear equality constraints. Afterwards, such a solution is applied to the cases of the quadratic equality constraint and inequality constraints and the two constrained state filtering problems are transformed into two relative constrained optimization problems. Then they are solved by the Lagrangian multiplier and linear matrix inequality techniques, respectively. Finally, two simple tracking examples are provided to illustrate the effectiveness of the reduced-order filters.展开更多
The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this metho...The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this method usually estimates L signal DOAs by finding roots that lie closest to the unit circle of a(2M-1)-order polynomial, where L 〈 M. A novel efficient root-MUSIC-based method for direction estimation is presented, in which the order of polynomial is efficiently reduced to 2L. Compared with the unitary root-MUSIC(U-root-MUSIC) approach which involves real-valued computations only in the subspace decomposition stage, both tasks of subspace decomposition and polynomial rooting are implemented with real-valued computations in the new technique,which hence shows a significant efficiency advantage over most state-of-the-art techniques. Numerical simulations are conducted to verify the correctness and efficiency of the new estimator.展开更多
A new two-stage reduced-dimension space-time adaptiveprocessing (STAP) approach, which combines the subcoherentprocessing interval (sub-CPI) STAP and the principalcomponent analysis (PCA), is proposed to achieve...A new two-stage reduced-dimension space-time adaptiveprocessing (STAP) approach, which combines the subcoherentprocessing interval (sub-CPI) STAP and the principalcomponent analysis (PCA), is proposed to achieve a more enhancedconvergence measure of effectiveness (MOE). Furthermore,in the case of the subspace leakage phenomenon, theproposed STAP method is modified to hold the fast convergenceMOE by using the covariance matrix taper (CMT) technique. Bothsimulation and real airborne radar data processing are providedto analyze the convergence MOE performance of the proposedSTAP methods. The results show the proposed method is moresuitable for the practical radar applications when compared withthe conventional sub-CPI STAP method.展开更多
文摘In this paper,an integrated guidance and control method based on an adaptive path-following controller is proposed to control a spin-stabilized projectile with only translational motion information under the constraint of an actuator,uncertainties in aerodynamic parameters and measurements,and control system complexity.Owing to the fairly high rotation speed,the dynamic model of this missile is strongly nonlinear,uncertain and coupled in pitch,yaw and roll channels.A theoretical equivalent resultant force and uncertainty compensation method are comprehensively used to realize decoupling of pitch and yaw.In response to the strong nonlinear and time-varying characteristics of the dynamic system,the quasi-linear model whose parameters are obtained by interpolation of points selected as the segmentation points in the trajectory envelope,is used for calculation in each step.To cope with the system uncertainty caused by model approximation,parameter uncertainty and ballistic interference,an extended state estimator is used to compensate the output feedback according to the test ballistic angle.In order to improve the tracking efficiency and ensure the tracking error convergence with only translational motion information,the virtual guide point,whose derivative is deduced according to the Lyapunov principle,is calculated in real time according to the projection relationship between the real-time position and the reference trajectory,and a virtual line-of-sight angle and the backstepping method are used for the design of the guidance and control system.In order to avoid the influence of control input saturation on the guidance and control performance due to the actuator limitation and improve the robustness of the system,an anti-saturation compensator is designed according to the two-step method.The feasibility and effectiveness of the path-following controller is verified through closed-loop flight simulations with measurement,control,and condition uncertainties.The results indicate that the designed controller can converge to the reference path and evidently decrease the distance between the impact point and target under different uncertainties.
基金Defense Research&Development Organization(DRDO),India for financial support towards this study。
文摘The present day weapon technology demands novel energetic materials that exhibit simultaneous high explosive yield and reduced sensitivity.This article demonstrates application of spray evaporation to prepare reduced sensitive co-crystals of high performance nitramine explosives like HMX and CL-20 with a relatively less insensitive explosive 1,1-diamino-2,2-dinitroethylene or FOX-7.Stronger intermolecurar hydrogen bonding in FOX-7 is responsible for limited solubility in nost of o rganic solvents.Large solubility differences of FOX-7 with HMX and CL-20 restricts ifs co-crystallization through classical methods that yields thermodynamically favorable product.Spray flash evaporation,a kinetic crystallization method,has been therefore adopted and could successfully produce CL-20/FOX-7(2:1) and HMX/FQX-7(4:1) co-crystals.The fine powdered materials obtained were characterized by SEM,powder XRD,Raman spectro scopy,DSC-TGA etc.Multipoint Raman spectra showed consistent occurrence of spectral features indicating stoichiometric co-existence of ingredients in the crystal lattices.DSC analysis showed absence of all thermally assisted solidsolid phase transformation in the co-crystals as they were observed in pristine materials.The thermal stability calculated in terms of activation barrier fordecomposition,revealed the CL-20/FOX-7 co-crystal to be interlediately stable on comparison to their constituents while,the HMX/FOX-7 co-crystal is more stable.Compared to pure HMX and CL-20,both the co-crystals have shown higher insensitivity to impact force,suggesting them to be suitable for future generation insensitive munitions.
基金Project(KJ2012A045) supported by the Natural Science Foundation of Education Commission of Anhui Province,China
文摘A reduced graphene oxide/Ni(OH)2 composite with excellent supercapacitive performance was synthesized by a facile hydrothermal route without organic solvents or templates used.XRD and SEM results reveal that the nickel hydroxide,which crystallizes into hexagonal β-Ni(OH)2 nanoflakes with a diameter less than 200 nm and a thickness of about 10 nm,is well combined with the reduced graphene oxide sheets.Electrochemical performance of the synthesized composite as an electrode material was investigated by cyclic voltammetry,electrochemical impedance spectroscopy and galvanostatic charge/discharge measurements.Its specific capacitance is determined to be 1672 F/g at a scan rate of 2 mV/s,and 696 F/g at a high scan rate of 50 mV/s.After 2000 cycles at a current density of 10 A/g,the composite exhibits a specific capacitance of 969 F/g,retaining about 86% of its initial capacitance.The composite delivers a high energy density of 83.6 W·h/kg at a power density of 1.0 kW/kg.The excellent supercapacitive performance along with the easy synthesis method allows the synthesized composite to be promising for supercapacitor applications.
文摘For a class of systems with unmodeled dynamics, robust adaptive stabilization problemis considered in this paper. Firstly, by a series of coordinate changes, the original system is re-parameterized. Then, by introducing a reduced-order observer, an error system is obtained. Basedon the system, a reduced-order adaptive backstepping controller design scheme is given. It is provedthat all the signals in the adaptive control system are globally uniformly bounded, and the regulationerror converges to zero asymptotically. Due to the order deduction of the controller, the design schemein this paper has more practical values. A simulation example further demonstrates the e?ciency ofthe control scheme.
文摘In order to slove the large-scale nonlinear programming (NLP) problems efficiently, an efficient optimization algorithm based on reduced sequential quadratic programming (rSQP) and automatic differentiation (AD) is presented in this paper. With the characteristics of sparseness, relatively low degrees of freedom and equality constraints utilized, the nonlinear programming problem is solved by improved rSQP solver. In the solving process, AD technology is used to obtain accurate gradient information. The numerical results show that the combined algorithm, which is suitable for large-scale process optimization problems, can calculate more efficiently than rSQP itself.
基金Priority Academic Program Development of Jiangsu Higher Education Institutions(2022JSPAPD006)。
文摘OBJECTIVE To assess whether N-acetylcysteine(NAC)and reduced glutathione(GSH)are effective in reversing flupirtine-induced hepatotoxicity and whether they have other beneficial effects when combined with flupirtine.METHODS The analgesic effects of NAC and flupirtine were first evaluated in carrageenaninduced inflammatory pain and paclitaxel-induced neuropathic pain.The combination subthreshold⁃ing approach was then used to determine whether the combination of NAC and flupirtine produced synergistic analgesic effects.Hepatotoxicity markers and histopathological examination of the liver were used to assess the efficacy of NAC and GSH in reversing flupirtine-induced hepato⁃toxicity.Finally,the effect of GSH on the safe range of flupirtine was assessed in an acute tox⁃icity assay.RESULTS Flupirtine and NAC pro⁃duced dose-dependent antiallodynic effects evoked by carrageenan and paclitaxel in mice.In the above model,the combination of NAC and flupirtine produced an unexpected synergistic analgesic effect.There were no significant differ⁃ences observed in the hepatotoxicity markers and liver histopathology between the experimen⁃tal group and the control group under NAC and GSH treatment.Finally,GSH(200 mg·kg^(-1))expanded the therapeutic index of flupirtine by 1.77 times.CONCLUSION NAC and GSH are effective in preventing liver damage caused by long-term flupirtine use,which provides a solu⁃tion for the safe and effective treatment of chronic pain with flupirtine.In addition,the other benefi⁃cial effects of NAC and GSH when combined with flupirtine may provide the basis for the devel⁃opment of a new therapy with minimal sideeffects and good efficacy.
文摘Low power and real time very large scale integration (VLSI) architectures of motion estimation (ME) algorithms for mobile devices and applications are presented. The power reduction is achieved by devising a novel correction recovery mechanism based on algorithms which allow the use of reduced bit sum of absolute difference (RBSAD) metric for calculating matching error and conversion to full resolution sum of absolute difference (SAD) metric whenever necessary. Parallel and pipelined architectures for high throughput of full search ME corresponding to both the full resolution SAD and the generalized RBSAD algorithm are synthe- sized using Xilinx Synthesis Tools (XST), where the ME designs based on reduced bit (RB) algorithms demonstrate the reduction in power consumption up to 45% and/or the reduction in area up to 38%.
基金supported by the Military Scientific Research Program(41401020301).
文摘To address the issue of rule premise combination explosion in the construction of the traditional complete conjunctive belief rule base(BRB),this paper introduces an orthogonal design method to reduce the conjunctive BRB.The reasoning method based on reduced conjunctive BRB is designed with the help of the conversion technology from conjunctive BRB to disjunctive BRB.Finally,the operational mission effectiveness evaluation is taken as an example to verify the proposed method.The results show that the method proposed in this paper is feasible and effective.
基金Supported by National Natural Science Foundation of P. R. China (60504034) Youth Foundation of Heilongjiang Province (QC04A01) Outstanding Youth Foundation of Heilongjiang University (JC200404)
文摘Based on the optimal fusion algorithm weighted by matrices in the linear minimum variance (LMV) sense, a distributed full-order optimal fusion Kalman filter (DFFKF) is given for discrete-time stochastic singular systems with multiple sensors, which involves the inverse of a high-dimension matrix to compute matrix weights. To reduce the computational burden, a distributed reduced-order fusion Kalman filter (DRFKF) is presented, which involves in parallel the inverses of two relatively low-dimension matrices to compute matrix weights. A simulation example shows the effectiveness.
基金supported by the National Key Basic Research Development Project (973 Program) (2012CB821205)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(HIT.NSRIF.2009004)
文摘This paper aims at solving the state filtering problem for linear systems with state constraints. Three classes of typical state constraints, i.e., linear equality, quadratic equality and inequality, are discussed. By using the linear relationships among different state variables, a reduced-order Kalman filter is derived for the system with linear equality constraints. Afterwards, such a solution is applied to the cases of the quadratic equality constraint and inequality constraints and the two constrained state filtering problems are transformed into two relative constrained optimization problems. Then they are solved by the Lagrangian multiplier and linear matrix inequality techniques, respectively. Finally, two simple tracking examples are provided to illustrate the effectiveness of the reduced-order filters.
基金supported by the National Natural Science Foundation of China(61501142)the Shandong Provincial Natural Science Foundation(ZR2014FQ003)+1 种基金the Special Foundation of China Postdoctoral Science(2016T90289)the China Postdoctoral Science Foundation(2015M571414)
文摘The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this method usually estimates L signal DOAs by finding roots that lie closest to the unit circle of a(2M-1)-order polynomial, where L 〈 M. A novel efficient root-MUSIC-based method for direction estimation is presented, in which the order of polynomial is efficiently reduced to 2L. Compared with the unitary root-MUSIC(U-root-MUSIC) approach which involves real-valued computations only in the subspace decomposition stage, both tasks of subspace decomposition and polynomial rooting are implemented with real-valued computations in the new technique,which hence shows a significant efficiency advantage over most state-of-the-art techniques. Numerical simulations are conducted to verify the correctness and efficiency of the new estimator.
基金Supported by National Natural Science Foundation of China(60464001),the Program for 100 Young and Middle-aged Disciplinary Leaders in Guangxi Higher Education Institutions
基金supported by the National Natural Science Foundation of China(611011296122700161301089)
文摘A new two-stage reduced-dimension space-time adaptiveprocessing (STAP) approach, which combines the subcoherentprocessing interval (sub-CPI) STAP and the principalcomponent analysis (PCA), is proposed to achieve a more enhancedconvergence measure of effectiveness (MOE). Furthermore,in the case of the subspace leakage phenomenon, theproposed STAP method is modified to hold the fast convergenceMOE by using the covariance matrix taper (CMT) technique. Bothsimulation and real airborne radar data processing are providedto analyze the convergence MOE performance of the proposedSTAP methods. The results show the proposed method is moresuitable for the practical radar applications when compared withthe conventional sub-CPI STAP method.