For the beam pumping unit,the power consumption of oil-well power heater accounts for a large part of the pumping unit.Decreasing the energy consumption of the power heater is an important approach to reduce that of t...For the beam pumping unit,the power consumption of oil-well power heater accounts for a large part of the pumping unit.Decreasing the energy consumption of the power heater is an important approach to reduce that of the pumping unit.To decrease the energy consumption of oil-well power heater,the proper control method is needed.Based on summarizing the existing control method of power heater,a control method of oil-well power heater of beam pumping unit based on RNN neural network is proposed.The method is forecasting the polished rod load of the beam pumping unit through RNN neural network and using the polished rod load for real-time closed-loop control of the power heater,which adjusts average output power,so as to decrease the power consumption.The experimental data show that the control method is entirely feasible.It not only ensures the oil production,but also improves the energy-saving effect of the pumping unit.展开更多
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force...A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method.展开更多
In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the mem...In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the memory function of the RNN to estimate the errors of the INS,thereby obtaining a continuous,reliable and high-precision navigation solution.The performance of the proposed method is firstly demonstrated using an INS/GNSS simulation environment.Subsequently,an experimental test on boat is also conducted to validate the performance of the method.The results show a promising application prospect for RNN in the field of positioning for INS/GNSS integrated navigation in the absence of GNSS signal,as it outperforms extreme learning machine(ELM)and EKF by approximately 30%and 60%,respectively.展开更多
Overlapped X domain multiplexing(Ov XDM) is a promising encoding technique to obtain high spectral efficiency by utilizing Inter-Symbol Interference(ISI). However, the computational complexity of Maximum Likelihood Se...Overlapped X domain multiplexing(Ov XDM) is a promising encoding technique to obtain high spectral efficiency by utilizing Inter-Symbol Interference(ISI). However, the computational complexity of Maximum Likelihood Sequence Detection(MLSD) increases exponentially with the growth of spectral efficiency in Ov XDM, which is unbearable for practical implementations. This paper proposes an Ov TDM decoding method based on Recurrent Neural Network(RNN) to realize fast decoding of Ov TDM system, which has lower decoding complexity than the traditional fast decoding method. The paper derives the mathematical model of the Ov TDM decoder based on RNN and constructs the decoder model. And we compare the performance of the proposed decoding method with the MLSD algorithm and the Fano algorithm. It’s verified that the proposed decoding method exhibits a higher performance than the traditional fast decoding algorithm, especially for the scenarios of a high overlapped multiplexing coefficient.展开更多
With the popularity of smart handheld devices, mobile streaming video has multiplied the global network traffic in recent years. A huge concern of users' quality of experience(Qo E) has made rate adaptation method...With the popularity of smart handheld devices, mobile streaming video has multiplied the global network traffic in recent years. A huge concern of users' quality of experience(Qo E) has made rate adaptation methods very attractive. In this paper, we propose a two-phase rate adaptation strategy to improve users' real-time video Qo E. First, to measure and assess video Qo E, we provide a continuous Qo E prediction engine modeled by RNN recurrent neural network. Different from traditional Qo E models which consider the Qo E-aware factors separately or incompletely, our RNN-Qo E model accounts for three descriptive factors(video quality, rebuffering, and rate change) and reflects the impact of cognitive memory and recency. Besides, the video playing is separated into the initial startup phase and the steady playback phase, and we takes different optimization goals for each phase: the former aims at shortening the startup delay while the latter ameliorates the video quality and the rebufferings. Simulation results have shown that RNN-Qo E can follow the subjective Qo E quite well, and the proposed strategy can effectively reduce the occurrence of rebufferings caused by the mismatch between the requested video rates and the fluctuated throughput and attains standout performance on real-time Qo E compared with classical rate adaption methods.展开更多
The robust global exponential stability of a class of interval recurrent neural networks(RNNs) is studied,and a new robust stability criterion is obtained in the form of linear matrix inequality.The problem of robus...The robust global exponential stability of a class of interval recurrent neural networks(RNNs) is studied,and a new robust stability criterion is obtained in the form of linear matrix inequality.The problem of robust stability of interval RNNs is transformed into a problem of solving a class of linear matrix inequalities.Thus,the robust stability of interval RNNs can be analyzed by directly using the linear matrix inequalities(LMI) toolbox of MATLAB.Numerical example is given to show the effectiveness of the obtained results.展开更多
文摘For the beam pumping unit,the power consumption of oil-well power heater accounts for a large part of the pumping unit.Decreasing the energy consumption of the power heater is an important approach to reduce that of the pumping unit.To decrease the energy consumption of oil-well power heater,the proper control method is needed.Based on summarizing the existing control method of power heater,a control method of oil-well power heater of beam pumping unit based on RNN neural network is proposed.The method is forecasting the polished rod load of the beam pumping unit through RNN neural network and using the polished rod load for real-time closed-loop control of the power heater,which adjusts average output power,so as to decrease the power consumption.The experimental data show that the control method is entirely feasible.It not only ensures the oil production,but also improves the energy-saving effect of the pumping unit.
基金supported by the Ministry of Trade,Industry & Energy(MOTIE,Korea) under Industrial Technology Innovation Program (No.10063424,'development of distant speech recognition and multi-task dialog processing technologies for in-door conversational robots')
文摘A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method.
基金supported in part by the National Natural Science Foundation of China(No.41876222)。
文摘In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the memory function of the RNN to estimate the errors of the INS,thereby obtaining a continuous,reliable and high-precision navigation solution.The performance of the proposed method is firstly demonstrated using an INS/GNSS simulation environment.Subsequently,an experimental test on boat is also conducted to validate the performance of the method.The results show a promising application prospect for RNN in the field of positioning for INS/GNSS integrated navigation in the absence of GNSS signal,as it outperforms extreme learning machine(ELM)and EKF by approximately 30%and 60%,respectively.
基金supported by the National Natural Science Foundation of China under Grant No.61871049.
文摘Overlapped X domain multiplexing(Ov XDM) is a promising encoding technique to obtain high spectral efficiency by utilizing Inter-Symbol Interference(ISI). However, the computational complexity of Maximum Likelihood Sequence Detection(MLSD) increases exponentially with the growth of spectral efficiency in Ov XDM, which is unbearable for practical implementations. This paper proposes an Ov TDM decoding method based on Recurrent Neural Network(RNN) to realize fast decoding of Ov TDM system, which has lower decoding complexity than the traditional fast decoding method. The paper derives the mathematical model of the Ov TDM decoder based on RNN and constructs the decoder model. And we compare the performance of the proposed decoding method with the MLSD algorithm and the Fano algorithm. It’s verified that the proposed decoding method exhibits a higher performance than the traditional fast decoding algorithm, especially for the scenarios of a high overlapped multiplexing coefficient.
基金supported by the National Nature Science Foundation of China(NSFC 60622110,61471220,91538107,91638205)National Basic Research Project of China(973,2013CB329006),GY22016058
文摘With the popularity of smart handheld devices, mobile streaming video has multiplied the global network traffic in recent years. A huge concern of users' quality of experience(Qo E) has made rate adaptation methods very attractive. In this paper, we propose a two-phase rate adaptation strategy to improve users' real-time video Qo E. First, to measure and assess video Qo E, we provide a continuous Qo E prediction engine modeled by RNN recurrent neural network. Different from traditional Qo E models which consider the Qo E-aware factors separately or incompletely, our RNN-Qo E model accounts for three descriptive factors(video quality, rebuffering, and rate change) and reflects the impact of cognitive memory and recency. Besides, the video playing is separated into the initial startup phase and the steady playback phase, and we takes different optimization goals for each phase: the former aims at shortening the startup delay while the latter ameliorates the video quality and the rebufferings. Simulation results have shown that RNN-Qo E can follow the subjective Qo E quite well, and the proposed strategy can effectively reduce the occurrence of rebufferings caused by the mismatch between the requested video rates and the fluctuated throughput and attains standout performance on real-time Qo E compared with classical rate adaption methods.
基金Supported by the Natural Science Foundation of Shandong Province (ZR2010FM038,ZR2010FL017)
文摘The robust global exponential stability of a class of interval recurrent neural networks(RNNs) is studied,and a new robust stability criterion is obtained in the form of linear matrix inequality.The problem of robust stability of interval RNNs is transformed into a problem of solving a class of linear matrix inequalities.Thus,the robust stability of interval RNNs can be analyzed by directly using the linear matrix inequalities(LMI) toolbox of MATLAB.Numerical example is given to show the effectiveness of the obtained results.