This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environment...This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environments with underwater obstacles are computed using a numerical solution procedure based on an A* algorithm. The USV is modeled with a circular shape in 2 degrees of freedom(surge and yaw). In this paper, two-dimensional(2-D) underwater obstacle avoidance and the robust real-time path re-planning technique for actual USV using multi-beam FLS are developed. Our real-time path re-planning algorithm has been tested to regenerate the optimal path for several updated frames in the field of view of the sonar with a proper update frequency of the FLS. The performance of the proposed method was verified through simulations, and sea experiments. For simulations, the USV model can avoid both a single stationary obstacle, multiple stationary obstacles and moving obstacles with the near-optimal trajectory that are performed both in the vehicle and the world reference frame. For sea experiments, the proposed method for an underwater obstacle avoidance system is implemented with a USV test platform. The actual USV is automatically controlled and succeeded in its real-time avoidance against the stationary undersea obstacle in the field of view of the FLS together with the Global Positioning System(GPS) of the USV.展开更多
This paper describes a real-time beam tuning method with an improved asynchronous advantage actor–critic(A3C)algorithm for accelerator systems.The operating parameters of devices are usually inconsistent with the pre...This paper describes a real-time beam tuning method with an improved asynchronous advantage actor–critic(A3C)algorithm for accelerator systems.The operating parameters of devices are usually inconsistent with the predictions of physical designs because of errors in mechanical matching and installation.Therefore,parameter optimization methods such as pointwise scanning,evolutionary algorithms(EAs),and robust conjugate direction search are widely used in beam tuning to compensate for this inconsistency.However,it is difficult for them to deal with a large number of discrete local optima.The A3C algorithm,which has been applied in the automated control field,provides an approach for improving multi-dimensional optimization.The A3C algorithm is introduced and improved for the real-time beam tuning code for accelerators.Experiments in which optimization is achieved by using pointwise scanning,the genetic algorithm(one kind of EAs),and the A3C-algorithm are conducted and compared to optimize the currents of four steering magnets and two solenoids in the low-energy beam transport section(LEBT)of the Xi’an Proton Application Facility.Optimal currents are determined when the highest transmission of a radio frequency quadrupole(RFQ)accelerator downstream of the LEBT is achieved.The optimal work points of the tuned accelerator were obtained with currents of 0 A,0 A,0 A,and 0.1 A,for the four steering magnets,and 107 A and 96 A for the two solenoids.Furthermore,the highest transmission of the RFQ was 91.2%.Meanwhile,the lower time required for the optimization with the A3C algorithm was successfully verified.Optimization with the A3C algorithm consumed 42%and 78%less time than pointwise scanning with random initialization and pre-trained initialization of weights,respectively.展开更多
Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,i...Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,is still dominant in automobile industry,which is less flexible when welding objects or situation change.A novel real-time algorithm consisting of seam detection and generation is proposed to track seam.Using captured 3D points,space vectors were created between two adjacent points along each laser line and then a vector angle based algorithm was developed to detect target points on the seam.Least square method was used to fit target points to a welding trajectory for seam tracking.Furthermore,the real-time seam tracking process was simulated in MATLAB/Simulink.The trend of joint angles vs.time was logged and a comparison between the off-line and the proposed seam tracking algorithm was conducted.Results show that the proposed real-time seam tracking algorithm can work in a real-time scenario and have high accuracy in welding point positioning.展开更多
Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportio...Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportional Fairness (PF) algorithm and Modified Largest Weighted Delay First (M-LWDF) algorithm, a new packet scheduling algorithm for real-time services in broadband WMAN, called Enhanced M-LWDF (EM-LWDF), was proposed. The algorithm phases in new information to measure the load of service queues and updates the state parameters in real-time way, which remarkably improves system performance.Simulation results show that comparing with M-LWDF algorithm, the proposed algorithm is advantageous in performances of queuing delay and fairness while guaranteeing system throughput.展开更多
Aimed at the real-time forward kinematics solving problem of Stewart parallel manipulator in the control course, a mixed algorithm combining immune evolutionary algorithm and numerical iterative scheme is proposed. Fi...Aimed at the real-time forward kinematics solving problem of Stewart parallel manipulator in the control course, a mixed algorithm combining immune evolutionary algorithm and numerical iterative scheme is proposed. Firstly taking advantage of simpleness of inverse kinematics, the forward kinematics is transformed to an optimal problem. Immune evolutionary algorithm is employed to find approximate solution of this optimal problem in manipulator's workspace. Then using above solution as iterative initialization, a speedy numerical iterative scheme is proposed to get more precise solution. In the manipulator running course, the iteration initialization can be selected as the last period position and orientation. Because the initialization is closed to correct solution, solving precision is high and speed is rapid enough to satisfy real-time requirement. This mixed forward kinematics algorithm is applied to real Stewart parallel manipulator in the real-time control course. The examination result shows that the algorithm is very efficient and practical.展开更多
Aiming at the stability and others properties of active magnetic bearing (AMB) system influenced by the periodic unbalance stimulation synchronous with rotor rotational speed, a new real-time adaptive feed-forward u...Aiming at the stability and others properties of active magnetic bearing (AMB) system influenced by the periodic unbalance stimulation synchronous with rotor rotational speed, a new real-time adaptive feed-forward unbalance force compensation scheme is proposed based on variable step-size least mean square(LMS) algorithm as the feed-forward compensation controller. The controller can provide some suitable sinusoidal signals to com- pensate the feedback unbalance response signals synchronous with the rotary frequency, then reduce the fluctua- tion of the control currents and weaken the active control of AMB system. The variable step-size proportional to the rotational frequency is deduced by analyzing the principle of normal LMS algorithm and its deficiency in the application of real-time filtering of AMB system. Experimental results show that the new method can implement real-time unbalance force compensation in a wide frequency band, reduce the effect of unbalance stimulant force on the housing of AMB system, and provide convenience to improve rotational speed.展开更多
We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and geneti...We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and genetic algorithm(GA) is numerically simulated. Then, using a high speed digital micromirror device, we carry out light focusing experiments with the modified PSO algorithm and GA. The experimental results show that the modified PSO algorithm has greater robustness and faster convergence speed than GA. This modified PSO algorithm has great application prospects in optical focusing and imaging inside in vivo biological tissue, which possesses a complicated background.展开更多
Production optimization has gained increasing attention from the smart oilfield community because it can increase economic benefits and oil recovery substantially.While existing methods could produce high-optimality r...Production optimization has gained increasing attention from the smart oilfield community because it can increase economic benefits and oil recovery substantially.While existing methods could produce high-optimality results,they cannot be applied to real-time optimization for large-scale reservoirs due to high computational demands.In addition,most methods generally assume that the reservoir model is deterministic and ignore the uncertainty of the subsurface environment,making the obtained scheme unreliable for practical deployment.In this work,an efficient and robust method,namely evolutionaryassisted reinforcement learning(EARL),is proposed to achieve real-time production optimization under uncertainty.Specifically,the production optimization problem is modeled as a Markov decision process in which a reinforcement learning agent interacts with the reservoir simulator to train a control policy that maximizes the specified goals.To deal with the problems of brittle convergence properties and lack of efficient exploration strategies of reinforcement learning approaches,a population-based evolutionary algorithm is introduced to assist the training of agents,which provides diverse exploration experiences and promotes stability and robustness due to its inherent redundancy.Compared with prior methods that only optimize a solution for a particular scenario,the proposed approach trains a policy that can adapt to uncertain environments and make real-time decisions to cope with unknown changes.The trained policy,represented by a deep convolutional neural network,can adaptively adjust the well controls based on different reservoir states.Simulation results on two reservoir models show that the proposed approach not only outperforms the RL and EA methods in terms of optimization efficiency but also has strong robustness and real-time decision capacity.展开更多
Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach wa...Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach was given. The randomized algorithms here were based on a property from statistical learning theory known as (uniform) convergence of empirical means (UCEM). It is argued that in order to assess the performance of a controller as the plant varies over a pre-specified family, it is better to use the average performance of the controller as the objective function to be optimized, rather than its worst-case performance. The approach is illustrated to be efficient through an example.展开更多
Real-time train rescheduling plays a vital role in railway transportation as it is crucial for maintaining punctuality and reliability in rail operations.In this paper,we propose a rescheduling model that incorporates...Real-time train rescheduling plays a vital role in railway transportation as it is crucial for maintaining punctuality and reliability in rail operations.In this paper,we propose a rescheduling model that incorporates constraints and objectives generated through human-computer interaction.This approach ensures that the model is aligned with practical requirements and daily operational tasks while facilitating iterative train rescheduling.The dispatcher’s empirical knowledge is integrated into the train rescheduling process using a human-computer interaction framework.We introduce six interfaces to dynamically construct constraints and objectives that capture human intentions.By summarizing rescheduling rules,we devise a rule-based conflict detection-resolution heuristic algorithm to effectively solve the formulated model.A series of numerical experiments are presented,demonstrating strong performance across the entire system.Furthermore,theflexibility of rescheduling is enhanced through secondary analysis-driven solutions derived from the outcomes of humancomputer interactions in the previous step.This proposed interaction method complements existing literature on rescheduling methods involving human-computer interactions.It serves as a tool to aid dispatchers in identifying more feasible solutions in accordance with their empirical rescheduling strategies.展开更多
Towards efficient implementation of x-ray ghost imaging(XGI),efficient data acquisition and fast image reconstruction together with high image quality are preferred.In view of radiation dose resulted from the incident...Towards efficient implementation of x-ray ghost imaging(XGI),efficient data acquisition and fast image reconstruction together with high image quality are preferred.In view of radiation dose resulted from the incident x-rays,fewer measurements with sufficient signal-to-noise ratio(SNR)are always anticipated.Available methods based on linear and compressive sensing algorithms cannot meet all the requirements simultaneously.In this paper,a method based on a modified compressive sensing algorithm with conjugate gradient descent method(CGDGI)is developed to solve the problems encountered in available XGI methods.Simulation and experiments demonstrate the practicability of CGDGI-based method for the efficient implementation of XGI.The image reconstruction time of sub-second implicates that the proposed method has the potential for real-time XGI.展开更多
基金supported by the Ministry of Science and Technology of Thailand
文摘This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environments with underwater obstacles are computed using a numerical solution procedure based on an A* algorithm. The USV is modeled with a circular shape in 2 degrees of freedom(surge and yaw). In this paper, two-dimensional(2-D) underwater obstacle avoidance and the robust real-time path re-planning technique for actual USV using multi-beam FLS are developed. Our real-time path re-planning algorithm has been tested to regenerate the optimal path for several updated frames in the field of view of the sonar with a proper update frequency of the FLS. The performance of the proposed method was verified through simulations, and sea experiments. For simulations, the USV model can avoid both a single stationary obstacle, multiple stationary obstacles and moving obstacles with the near-optimal trajectory that are performed both in the vehicle and the world reference frame. For sea experiments, the proposed method for an underwater obstacle avoidance system is implemented with a USV test platform. The actual USV is automatically controlled and succeeded in its real-time avoidance against the stationary undersea obstacle in the field of view of the FLS together with the Global Positioning System(GPS) of the USV.
文摘This paper describes a real-time beam tuning method with an improved asynchronous advantage actor–critic(A3C)algorithm for accelerator systems.The operating parameters of devices are usually inconsistent with the predictions of physical designs because of errors in mechanical matching and installation.Therefore,parameter optimization methods such as pointwise scanning,evolutionary algorithms(EAs),and robust conjugate direction search are widely used in beam tuning to compensate for this inconsistency.However,it is difficult for them to deal with a large number of discrete local optima.The A3C algorithm,which has been applied in the automated control field,provides an approach for improving multi-dimensional optimization.The A3C algorithm is introduced and improved for the real-time beam tuning code for accelerators.Experiments in which optimization is achieved by using pointwise scanning,the genetic algorithm(one kind of EAs),and the A3C-algorithm are conducted and compared to optimize the currents of four steering magnets and two solenoids in the low-energy beam transport section(LEBT)of the Xi’an Proton Application Facility.Optimal currents are determined when the highest transmission of a radio frequency quadrupole(RFQ)accelerator downstream of the LEBT is achieved.The optimal work points of the tuned accelerator were obtained with currents of 0 A,0 A,0 A,and 0.1 A,for the four steering magnets,and 107 A and 96 A for the two solenoids.Furthermore,the highest transmission of the RFQ was 91.2%.Meanwhile,the lower time required for the optimization with the A3C algorithm was successfully verified.Optimization with the A3C algorithm consumed 42%and 78%less time than pointwise scanning with random initialization and pre-trained initialization of weights,respectively.
基金Supported by Ministerial Level Advanced Research Foundation(65822576)Beijing Municipal Education Commission(KM201310858004,KM201310858001)
文摘Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,is still dominant in automobile industry,which is less flexible when welding objects or situation change.A novel real-time algorithm consisting of seam detection and generation is proposed to track seam.Using captured 3D points,space vectors were created between two adjacent points along each laser line and then a vector angle based algorithm was developed to detect target points on the seam.Least square method was used to fit target points to a welding trajectory for seam tracking.Furthermore,the real-time seam tracking process was simulated in MATLAB/Simulink.The trend of joint angles vs.time was logged and a comparison between the off-line and the proposed seam tracking algorithm was conducted.Results show that the proposed real-time seam tracking algorithm can work in a real-time scenario and have high accuracy in welding point positioning.
基金This work was funded by the National High Technology Research and Development Program ("863" Program) of China under Grant No.2007AA01Z289
文摘Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportional Fairness (PF) algorithm and Modified Largest Weighted Delay First (M-LWDF) algorithm, a new packet scheduling algorithm for real-time services in broadband WMAN, called Enhanced M-LWDF (EM-LWDF), was proposed. The algorithm phases in new information to measure the load of service queues and updates the state parameters in real-time way, which remarkably improves system performance.Simulation results show that comparing with M-LWDF algorithm, the proposed algorithm is advantageous in performances of queuing delay and fairness while guaranteeing system throughput.
文摘Aimed at the real-time forward kinematics solving problem of Stewart parallel manipulator in the control course, a mixed algorithm combining immune evolutionary algorithm and numerical iterative scheme is proposed. Firstly taking advantage of simpleness of inverse kinematics, the forward kinematics is transformed to an optimal problem. Immune evolutionary algorithm is employed to find approximate solution of this optimal problem in manipulator's workspace. Then using above solution as iterative initialization, a speedy numerical iterative scheme is proposed to get more precise solution. In the manipulator running course, the iteration initialization can be selected as the last period position and orientation. Because the initialization is closed to correct solution, solving precision is high and speed is rapid enough to satisfy real-time requirement. This mixed forward kinematics algorithm is applied to real Stewart parallel manipulator in the real-time control course. The examination result shows that the algorithm is very efficient and practical.
基金Supported by the National Natural Science Foundation of China(50437010)the National High Technology Research and Development Program of China("863"Program)(2006AA05Z205)the Project of Six Talented Peak of Jiangsu Province(07-D-013)~~
文摘Aiming at the stability and others properties of active magnetic bearing (AMB) system influenced by the periodic unbalance stimulation synchronous with rotor rotational speed, a new real-time adaptive feed-forward unbalance force compensation scheme is proposed based on variable step-size least mean square(LMS) algorithm as the feed-forward compensation controller. The controller can provide some suitable sinusoidal signals to com- pensate the feedback unbalance response signals synchronous with the rotary frequency, then reduce the fluctua- tion of the control currents and weaken the active control of AMB system. The variable step-size proportional to the rotational frequency is deduced by analyzing the principle of normal LMS algorithm and its deficiency in the application of real-time filtering of AMB system. Experimental results show that the new method can implement real-time unbalance force compensation in a wide frequency band, reduce the effect of unbalance stimulant force on the housing of AMB system, and provide convenience to improve rotational speed.
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFB1104500the Natural Science Foundation of Beijing under Grant No 7182091,the National Natural Science Foundation of China under Grant No 21627813the Fundamental Research Funds for the Central Universities under Grant No PYBZ1801
文摘We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and genetic algorithm(GA) is numerically simulated. Then, using a high speed digital micromirror device, we carry out light focusing experiments with the modified PSO algorithm and GA. The experimental results show that the modified PSO algorithm has greater robustness and faster convergence speed than GA. This modified PSO algorithm has great application prospects in optical focusing and imaging inside in vivo biological tissue, which possesses a complicated background.
基金This work is supported by the National Natural Science Foundation of China under Grant 52274057,52074340 and 51874335the Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-008the Science and Technology Support Plan for Youth Innovation of University in Shandong Province under Grant 2019KJH002,111 Project under Grant B08028.
文摘Production optimization has gained increasing attention from the smart oilfield community because it can increase economic benefits and oil recovery substantially.While existing methods could produce high-optimality results,they cannot be applied to real-time optimization for large-scale reservoirs due to high computational demands.In addition,most methods generally assume that the reservoir model is deterministic and ignore the uncertainty of the subsurface environment,making the obtained scheme unreliable for practical deployment.In this work,an efficient and robust method,namely evolutionaryassisted reinforcement learning(EARL),is proposed to achieve real-time production optimization under uncertainty.Specifically,the production optimization problem is modeled as a Markov decision process in which a reinforcement learning agent interacts with the reservoir simulator to train a control policy that maximizes the specified goals.To deal with the problems of brittle convergence properties and lack of efficient exploration strategies of reinforcement learning approaches,a population-based evolutionary algorithm is introduced to assist the training of agents,which provides diverse exploration experiences and promotes stability and robustness due to its inherent redundancy.Compared with prior methods that only optimize a solution for a particular scenario,the proposed approach trains a policy that can adapt to uncertain environments and make real-time decisions to cope with unknown changes.The trained policy,represented by a deep convolutional neural network,can adaptively adjust the well controls based on different reservoir states.Simulation results on two reservoir models show that the proposed approach not only outperforms the RL and EA methods in terms of optimization efficiency but also has strong robustness and real-time decision capacity.
文摘Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach was given. The randomized algorithms here were based on a property from statistical learning theory known as (uniform) convergence of empirical means (UCEM). It is argued that in order to assess the performance of a controller as the plant varies over a pre-specified family, it is better to use the average performance of the controller as the objective function to be optimized, rather than its worst-case performance. The approach is illustrated to be efficient through an example.
基金supported by the China Fundamental Research Funds for the Central Universities(2022JBQY006)。
文摘Real-time train rescheduling plays a vital role in railway transportation as it is crucial for maintaining punctuality and reliability in rail operations.In this paper,we propose a rescheduling model that incorporates constraints and objectives generated through human-computer interaction.This approach ensures that the model is aligned with practical requirements and daily operational tasks while facilitating iterative train rescheduling.The dispatcher’s empirical knowledge is integrated into the train rescheduling process using a human-computer interaction framework.We introduce six interfaces to dynamically construct constraints and objectives that capture human intentions.By summarizing rescheduling rules,we devise a rule-based conflict detection-resolution heuristic algorithm to effectively solve the formulated model.A series of numerical experiments are presented,demonstrating strong performance across the entire system.Furthermore,theflexibility of rescheduling is enhanced through secondary analysis-driven solutions derived from the outcomes of humancomputer interactions in the previous step.This proposed interaction method complements existing literature on rescheduling methods involving human-computer interactions.It serves as a tool to aid dispatchers in identifying more feasible solutions in accordance with their empirical rescheduling strategies.
基金supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0206004,2017YFA0206002,2018YFC0206002,and 2017YFA0403801)National Natural Science Foundation of China(Grant No.81430087)。
文摘Towards efficient implementation of x-ray ghost imaging(XGI),efficient data acquisition and fast image reconstruction together with high image quality are preferred.In view of radiation dose resulted from the incident x-rays,fewer measurements with sufficient signal-to-noise ratio(SNR)are always anticipated.Available methods based on linear and compressive sensing algorithms cannot meet all the requirements simultaneously.In this paper,a method based on a modified compressive sensing algorithm with conjugate gradient descent method(CGDGI)is developed to solve the problems encountered in available XGI methods.Simulation and experiments demonstrate the practicability of CGDGI-based method for the efficient implementation of XGI.The image reconstruction time of sub-second implicates that the proposed method has the potential for real-time XGI.