期刊文献+
共找到513篇文章
< 1 2 26 >
每页显示 20 50 100
Application of A* Algorithm for Real-time Path Re-planning of an Unmanned Surface Vehicle Avoiding Underwater Obstacles 被引量:9
1
作者 Thanapong Phanthong Toshihiro Maki +2 位作者 Tamaki Ura Takashi Sakamaki Pattara Aiyarak 《Journal of Marine Science and Application》 2014年第1期105-116,共12页
This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environment... This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environments with underwater obstacles are computed using a numerical solution procedure based on an A* algorithm. The USV is modeled with a circular shape in 2 degrees of freedom(surge and yaw). In this paper, two-dimensional(2-D) underwater obstacle avoidance and the robust real-time path re-planning technique for actual USV using multi-beam FLS are developed. Our real-time path re-planning algorithm has been tested to regenerate the optimal path for several updated frames in the field of view of the sonar with a proper update frequency of the FLS. The performance of the proposed method was verified through simulations, and sea experiments. For simulations, the USV model can avoid both a single stationary obstacle, multiple stationary obstacles and moving obstacles with the near-optimal trajectory that are performed both in the vehicle and the world reference frame. For sea experiments, the proposed method for an underwater obstacle avoidance system is implemented with a USV test platform. The actual USV is automatically controlled and succeeded in its real-time avoidance against the stationary undersea obstacle in the field of view of the FLS together with the Global Positioning System(GPS) of the USV. 展开更多
关键词 UNDERWATER OBSTACLE AVOIDANCE real-time pathre-planning A* algorithm SONAR image unmanned surface vehicle
在线阅读 下载PDF
Application of the asynchronous advantage actor–critic machine learning algorithm to real-time accelerator tuning 被引量:3
2
作者 Yun Zou Qing-Zi Xing +4 位作者 Bai-Chuan Wang Shu-Xin Zheng Cheng Cheng Zhong-Ming Wang Xue-Wu Wang 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第10期133-141,共9页
This paper describes a real-time beam tuning method with an improved asynchronous advantage actor–critic(A3C)algorithm for accelerator systems.The operating parameters of devices are usually inconsistent with the pre... This paper describes a real-time beam tuning method with an improved asynchronous advantage actor–critic(A3C)algorithm for accelerator systems.The operating parameters of devices are usually inconsistent with the predictions of physical designs because of errors in mechanical matching and installation.Therefore,parameter optimization methods such as pointwise scanning,evolutionary algorithms(EAs),and robust conjugate direction search are widely used in beam tuning to compensate for this inconsistency.However,it is difficult for them to deal with a large number of discrete local optima.The A3C algorithm,which has been applied in the automated control field,provides an approach for improving multi-dimensional optimization.The A3C algorithm is introduced and improved for the real-time beam tuning code for accelerators.Experiments in which optimization is achieved by using pointwise scanning,the genetic algorithm(one kind of EAs),and the A3C-algorithm are conducted and compared to optimize the currents of four steering magnets and two solenoids in the low-energy beam transport section(LEBT)of the Xi’an Proton Application Facility.Optimal currents are determined when the highest transmission of a radio frequency quadrupole(RFQ)accelerator downstream of the LEBT is achieved.The optimal work points of the tuned accelerator were obtained with currents of 0 A,0 A,0 A,and 0.1 A,for the four steering magnets,and 107 A and 96 A for the two solenoids.Furthermore,the highest transmission of the RFQ was 91.2%.Meanwhile,the lower time required for the optimization with the A3C algorithm was successfully verified.Optimization with the A3C algorithm consumed 42%and 78%less time than pointwise scanning with random initialization and pre-trained initialization of weights,respectively. 展开更多
关键词 real-time BEAM tuning Parameter optimization ASYNCHRONOUS ADVANTAGE actor–critic algorithm Low-energy BEAM transport
在线阅读 下载PDF
Novel Real-Time Seam Tracking Algorithm Based on Vector Angle and Least Square Method 被引量:1
3
作者 Guanhao Liang Qingsheng Luo +1 位作者 Zhuo Ge Xiaoqing Guan 《Journal of Beijing Institute of Technology》 EI CAS 2017年第2期150-157,共8页
Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,i... Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,is still dominant in automobile industry,which is less flexible when welding objects or situation change.A novel real-time algorithm consisting of seam detection and generation is proposed to track seam.Using captured 3D points,space vectors were created between two adjacent points along each laser line and then a vector angle based algorithm was developed to detect target points on the seam.Least square method was used to fit target points to a welding trajectory for seam tracking.Furthermore,the real-time seam tracking process was simulated in MATLAB/Simulink.The trend of joint angles vs.time was logged and a comparison between the off-line and the proposed seam tracking algorithm was conducted.Results show that the proposed real-time seam tracking algorithm can work in a real-time scenario and have high accuracy in welding point positioning. 展开更多
关键词 real-time seam tracking real-time seam detection laser scanner vector angle leastsquare method algorithm research
在线阅读 下载PDF
Packet Scheduling Algorithm for Real-Time Services in Broadband WMAN
4
作者 Zhang Hanyi, Su Xin (Wireless and Mobile Communication Technology R&D Center of Tsinghua University, Tsinghua National Laboratory for Information Science and Technology, Beijing 100084 , China ) 《ZTE Communications》 2009年第4期45-48,共4页
Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportio... Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportional Fairness (PF) algorithm and Modified Largest Weighted Delay First (M-LWDF) algorithm, a new packet scheduling algorithm for real-time services in broadband WMAN, called Enhanced M-LWDF (EM-LWDF), was proposed. The algorithm phases in new information to measure the load of service queues and updates the state parameters in real-time way, which remarkably improves system performance.Simulation results show that comparing with M-LWDF algorithm, the proposed algorithm is advantageous in performances of queuing delay and fairness while guaranteeing system throughput. 展开更多
关键词 Packet Scheduling algorithm for real-time Services in Broadband WMAN QoS OFDMA Simulation real WIMAX IEEE EM
在线阅读 下载PDF
A Mixed Real-time Algorithm for the Forward Kinematics of Stewart Parallel Manipulator
5
作者 王孙安 万亚民 《Journal of Electronic Science and Technology of China》 2006年第2期173-180,共8页
Aimed at the real-time forward kinematics solving problem of Stewart parallel manipulator in the control course, a mixed algorithm combining immune evolutionary algorithm and numerical iterative scheme is proposed. Fi... Aimed at the real-time forward kinematics solving problem of Stewart parallel manipulator in the control course, a mixed algorithm combining immune evolutionary algorithm and numerical iterative scheme is proposed. Firstly taking advantage of simpleness of inverse kinematics, the forward kinematics is transformed to an optimal problem. Immune evolutionary algorithm is employed to find approximate solution of this optimal problem in manipulator's workspace. Then using above solution as iterative initialization, a speedy numerical iterative scheme is proposed to get more precise solution. In the manipulator running course, the iteration initialization can be selected as the last period position and orientation. Because the initialization is closed to correct solution, solving precision is high and speed is rapid enough to satisfy real-time requirement. This mixed forward kinematics algorithm is applied to real Stewart parallel manipulator in the real-time control course. The examination result shows that the algorithm is very efficient and practical. 展开更多
关键词 stewart parallel manipulator forward kinematics immune evolutionary algorithm numerical iterative scheme real-time control
在线阅读 下载PDF
COMPENSATION CONTROL OF REAL-TIME UNBALANCE FORCE FOR ACTIVE MAGNETIC BEARING SYSTEM 被引量:3
6
作者 高辉 徐龙祥 朱益利 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第2期183-191,共9页
Aiming at the stability and others properties of active magnetic bearing (AMB) system influenced by the periodic unbalance stimulation synchronous with rotor rotational speed, a new real-time adaptive feed-forward u... Aiming at the stability and others properties of active magnetic bearing (AMB) system influenced by the periodic unbalance stimulation synchronous with rotor rotational speed, a new real-time adaptive feed-forward unbalance force compensation scheme is proposed based on variable step-size least mean square(LMS) algorithm as the feed-forward compensation controller. The controller can provide some suitable sinusoidal signals to com- pensate the feedback unbalance response signals synchronous with the rotary frequency, then reduce the fluctua- tion of the control currents and weaken the active control of AMB system. The variable step-size proportional to the rotational frequency is deduced by analyzing the principle of normal LMS algorithm and its deficiency in the application of real-time filtering of AMB system. Experimental results show that the new method can implement real-time unbalance force compensation in a wide frequency band, reduce the effect of unbalance stimulant force on the housing of AMB system, and provide convenience to improve rotational speed. 展开更多
关键词 active magnetic bearing variable step-size LMS algorithm bandwidth~ real-time unbalance forcecompensation~ adaptive filter
在线阅读 下载PDF
Shaping the Wavefront of Incident Light with a Strong Robustness Particle Swarm Optimization Algorithm 被引量:4
7
作者 李必奇 张彬 +3 位作者 冯祺 程晓明 丁迎春 柳强 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第12期15-18,共4页
We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and geneti... We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and genetic algorithm(GA) is numerically simulated. Then, using a high speed digital micromirror device, we carry out light focusing experiments with the modified PSO algorithm and GA. The experimental results show that the modified PSO algorithm has greater robustness and faster convergence speed than GA. This modified PSO algorithm has great application prospects in optical focusing and imaging inside in vivo biological tissue, which possesses a complicated background. 展开更多
关键词 PSO In Shaping the Wavefront of Incident Light with a Strong robustness Particle Swarm Optimization algorithm GA
在线阅读 下载PDF
Evolutionary-assisted reinforcement learning for reservoir real-time production optimization under uncertainty 被引量:2
8
作者 Zhong-Zheng Wang Kai Zhang +6 位作者 Guo-Dong Chen Jin-Ding Zhang Wen-Dong Wang Hao-Chen Wang Li-Ming Zhang Xia Yan Jun Yao 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期261-276,共16页
Production optimization has gained increasing attention from the smart oilfield community because it can increase economic benefits and oil recovery substantially.While existing methods could produce high-optimality r... Production optimization has gained increasing attention from the smart oilfield community because it can increase economic benefits and oil recovery substantially.While existing methods could produce high-optimality results,they cannot be applied to real-time optimization for large-scale reservoirs due to high computational demands.In addition,most methods generally assume that the reservoir model is deterministic and ignore the uncertainty of the subsurface environment,making the obtained scheme unreliable for practical deployment.In this work,an efficient and robust method,namely evolutionaryassisted reinforcement learning(EARL),is proposed to achieve real-time production optimization under uncertainty.Specifically,the production optimization problem is modeled as a Markov decision process in which a reinforcement learning agent interacts with the reservoir simulator to train a control policy that maximizes the specified goals.To deal with the problems of brittle convergence properties and lack of efficient exploration strategies of reinforcement learning approaches,a population-based evolutionary algorithm is introduced to assist the training of agents,which provides diverse exploration experiences and promotes stability and robustness due to its inherent redundancy.Compared with prior methods that only optimize a solution for a particular scenario,the proposed approach trains a policy that can adapt to uncertain environments and make real-time decisions to cope with unknown changes.The trained policy,represented by a deep convolutional neural network,can adaptively adjust the well controls based on different reservoir states.Simulation results on two reservoir models show that the proposed approach not only outperforms the RL and EA methods in terms of optimization efficiency but also has strong robustness and real-time decision capacity. 展开更多
关键词 Production optimization Deep reinforcement learning Evolutionary algorithm real-time optimization Optimization under uncertainty
在线阅读 下载PDF
Randomized Algorithms for Probabilistic Optimal Robust Performance Controller Design 被引量:1
9
作者 宋春雷 谢玲 《Journal of Beijing Institute of Technology》 EI CAS 2004年第1期15-19,共5页
Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach wa... Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach was given. The randomized algorithms here were based on a property from statistical learning theory known as (uniform) convergence of empirical means (UCEM). It is argued that in order to assess the performance of a controller as the plant varies over a pre-specified family, it is better to use the average performance of the controller as the objective function to be optimized, rather than its worst-case performance. The approach is illustrated to be efficient through an example. 展开更多
关键词 randomized algorithms statistical learning theory uniform convergence of empirical means (UCEM) probabilistic optimal robust performance controller design
在线阅读 下载PDF
Dynamic constraint and objective generation approach for real-time train rescheduling model under human-computer interaction
10
作者 Kai Liu Jianrui Miao +2 位作者 Zhengwen Liao Xiaojie Luan Lingyun Meng 《High-Speed Railway》 2023年第4期248-257,共10页
Real-time train rescheduling plays a vital role in railway transportation as it is crucial for maintaining punctuality and reliability in rail operations.In this paper,we propose a rescheduling model that incorporates... Real-time train rescheduling plays a vital role in railway transportation as it is crucial for maintaining punctuality and reliability in rail operations.In this paper,we propose a rescheduling model that incorporates constraints and objectives generated through human-computer interaction.This approach ensures that the model is aligned with practical requirements and daily operational tasks while facilitating iterative train rescheduling.The dispatcher’s empirical knowledge is integrated into the train rescheduling process using a human-computer interaction framework.We introduce six interfaces to dynamically construct constraints and objectives that capture human intentions.By summarizing rescheduling rules,we devise a rule-based conflict detection-resolution heuristic algorithm to effectively solve the formulated model.A series of numerical experiments are presented,demonstrating strong performance across the entire system.Furthermore,theflexibility of rescheduling is enhanced through secondary analysis-driven solutions derived from the outcomes of humancomputer interactions in the previous step.This proposed interaction method complements existing literature on rescheduling methods involving human-computer interactions.It serves as a tool to aid dispatchers in identifying more feasible solutions in accordance with their empirical rescheduling strategies. 展开更多
关键词 real-time train rescheduling Human-computer interaction Rule-based heuristic algorithm Secondary rescheduling
在线阅读 下载PDF
Research on Collaboration Theory of Distributed Measurement System and Real-Time of Communication Platform
11
作者 SHENYan 《Journal of Electronic Science and Technology of China》 2005年第1期95-95,共1页
关键词 distributed measurement system agent technology swarm intellgence Particle Swarm Optimization algorithm Collaboration model Switched Ethernet real-time Scheduling AEROENGINE
在线阅读 下载PDF
轮式拖拉机变速箱自动控制算法的设计与验证
12
作者 张梅红 《农机化研究》 北大核心 2025年第6期239-245,共7页
轮式拖拉机变速箱自动控制技术对于提高拖拉机的操作效率和安全性具有重要意义。为此,提出了一种农用轮式拖拉机的数字模型,以及发动机和变速器的自动控制算法。算法基于系统方法,将轮式拖拉机视为一个多子系统组成的复杂系统,包括发动... 轮式拖拉机变速箱自动控制技术对于提高拖拉机的操作效率和安全性具有重要意义。为此,提出了一种农用轮式拖拉机的数字模型,以及发动机和变速器的自动控制算法。算法基于系统方法,将轮式拖拉机视为一个多子系统组成的复杂系统,包括发动机、变速器、起落架、吊钩负载和操作员的控制动作等子系统,并优化了换挡的逻辑和功能。通过MatLab软件及其应用程序、Simulink、Sim-scape等工具对拖拉机的工作条件进行仿真,对算法进行验证和优化,结果表明:控制算法参数可在拖拉机操作循环中提供最小的燃料消耗率,且具有良好的鲁棒性和稳定性,在各种工作条件下都能够有效工作。研究结果可为提高拖拉机的性能和可靠性、降低维护成本提供一定的理论参考与技术支撑。 展开更多
关键词 轮式拖拉机 变速箱自动控制 算法设计 仿真验证 燃油效率 鲁棒性
在线阅读 下载PDF
基于MCE/GPD的语音识别及其一种Robust应用中初始参数的选择 被引量:3
13
作者 韩纪庆 高文 +1 位作者 张磊 王承发 《高技术通讯》 EI CAS CSCD 2000年第7期41-44,共4页
首先讨论了基于MCE/GPD的语音识别研究的最新进展。在此基础上 ,提出了一种环境特征判别学习的Robust语音识别方法 ,该方法基于最小分类错误准则利用梯度下降法迭代地学习环境特征。由于梯度下降法产生的是局部最优解 ,因此 ,寻找较好... 首先讨论了基于MCE/GPD的语音识别研究的最新进展。在此基础上 ,提出了一种环境特征判别学习的Robust语音识别方法 ,该方法基于最小分类错误准则利用梯度下降法迭代地学习环境特征。由于梯度下降法产生的是局部最优解 ,因此 ,寻找较好的环境特征初始值就显得非常重要。最后 。 展开更多
关键词 语音识别 环境特征 梯度下降法 计算机应用
在线阅读 下载PDF
EEMD-RobustICA和Prony算法在电力系统低频振荡模态辨识中的应用 被引量:10
14
作者 赵峰 吴梦娣 《太阳能学报》 EI CAS CSCD 北大核心 2019年第10期2919-2929,共11页
针对互联电网低频振荡辨识过程中Prony算法对噪声敏感的问题,该文将总体经验模态分解法、鲁棒性独立分量分析方法与Prony进行有机结合,运用到关键振荡模式辨识中。将待处理信号进行总体经验模态分解后得到的本征模态函数作为鲁棒性独立... 针对互联电网低频振荡辨识过程中Prony算法对噪声敏感的问题,该文将总体经验模态分解法、鲁棒性独立分量分析方法与Prony进行有机结合,运用到关键振荡模式辨识中。将待处理信号进行总体经验模态分解后得到的本征模态函数作为鲁棒性独立分量分析算法的输入,对得到的独立分量进行软阈值去噪后进行反变换得到重构后的本征模态函数,接着将重构后的本征模态函数相加得到去噪信号,用Prony算法对去噪信号进行辨识,最终得到低频振荡的模态参数。仿真结果表明:该方法综合利用了总体经验模态分解不依赖信号任何先验知识和完全由数据驱动的自适应性优点,及鲁棒性独立分量分析提取独立分量并保持分量信号完整性的优势,相比传统总体经验模态分解去噪算法,该方法在没有损失信号的前提下可提高分量信号的信噪比,克服Prony算法对噪声敏感的缺陷,更大程度去除噪声,有利于提高辨识精度和准确性,更能满足实际应用需求。 展开更多
关键词 总体经验模态分解 鲁棒性独立分量分析 PRONY算法 低频振荡 模式辨识
在线阅读 下载PDF
基于聚类的个性化联邦学习鲁棒性研究
15
作者 张明晗 张国梁 《科技创新与应用》 2025年第10期66-70,共5页
个性化联邦学习(Personalized Federated Learning,PFL)允许每个客户端根据本地数据特性定制个性化模型,从而提高子模型对本地数据的适应性和预测精度。该研究探讨PFL在抵御数据攻击方面的潜力,并结合聚类算法和联邦学习算法的方法,提... 个性化联邦学习(Personalized Federated Learning,PFL)允许每个客户端根据本地数据特性定制个性化模型,从而提高子模型对本地数据的适应性和预测精度。该研究探讨PFL在抵御数据攻击方面的潜力,并结合聚类算法和联邦学习算法的方法,提高模型的准确率和对投毒数据检测的鲁棒性。通过在联邦学习框架中引入聚类算法,能够有效地识别和处理数据中的异常值或有毒数据,从而增强模型的鲁棒性。该方法在MNIST以及P-MNIST数据集进行评估,结果表明,添加聚类的个性化联邦学习算法模型的准确率和收敛速度提高,对投毒数据的防御能力增强,证明算法的有效性和鲁棒性。 展开更多
关键词 联邦学习 个性化联邦学习 聚类算法 模型鲁棒性 数据隐私
在线阅读 下载PDF
感知系统受限下的城市低空无人机避障算法
16
作者 李安醍 李诚龙 郑远 《电子科技大学学报》 北大核心 2025年第2期257-265,共9页
针对物流无人机在城市低空复杂环境和高密度动态交通流下的避障决策问题,提出一种动态三维避障算法。首先对城市低空环境建模并将无人机的动态避障问题表达为马尔可夫决策过程,通过在动作集中加入高度变化等飞行动作,将避障算法可行解... 针对物流无人机在城市低空复杂环境和高密度动态交通流下的避障决策问题,提出一种动态三维避障算法。首先对城市低空环境建模并将无人机的动态避障问题表达为马尔可夫决策过程,通过在动作集中加入高度变化等飞行动作,将避障算法可行解的范围拓展到三维空间中。其次改进了奖励估值函数,使算法能够在绕飞以及爬升越障中通过蒙特卡罗树搜索权衡最优避障策略。仿真表明该算法能够选择最优策略,缩短24.4%的飞行时间并减少33.2%的飞行距离。最后考虑到无人机感知系统容易因建筑物遮挡受限而造成对环境状态观测不完全,对算法鲁棒性做出了验证,其结果表明随着感知范围缩短,算法仍能求得可行解。 展开更多
关键词 无人机 航空安全 避障算法 马尔可夫决策过程 鲁棒性
在线阅读 下载PDF
多模态分布式算法对生物识别的研究
17
作者 赵娜 张盛楠 《山西电子技术》 2025年第2期106-108,126,共4页
研究旨在利用多模态分布式算法,提升生物识别和身份认证的效果。该算法采用了多个特征提取方法,并结合核算法进行特征选择和数据融合,从而在不同环境下对人脸进行准确识别和身份认证。
关键词 多模态分布式算法 生物识别算法 鲁棒性
在线阅读 下载PDF
低复杂度协方差矩阵重构鲁棒自适应波束形成算法
18
作者 张诚禹 马文峰 +1 位作者 潘子豪 王聪 《陆军工程大学学报》 2025年第2期96-104,共9页
基于干扰加噪声协方差矩阵(interference and noise covariance matrix, INCM)的重构算法是近年兴起的鲁棒自适应波束形成(robust adaptive beamforming, RAB)技术。针对目前大多数INCM算法只注重不同误差情况下的性能表现而忽视了算法... 基于干扰加噪声协方差矩阵(interference and noise covariance matrix, INCM)的重构算法是近年兴起的鲁棒自适应波束形成(robust adaptive beamforming, RAB)技术。针对目前大多数INCM算法只注重不同误差情况下的性能表现而忽视了算法的计算复杂度的问题,聚焦INCM算法鲁棒性和计算复杂度,在使用Capon算法得到干扰和期望信号(signal of interest, SOI)的名义导向矢量的基础上,使用鲁棒Capon波束形成(robust Capon beamforming, RCB)算法对名义导向矢量进行校正,得到干扰和SOI的实际导向矢量,提升了对导向矢量误差的抵抗能力。使用样本协方差矩阵(sample covariance matrix, SCM)的最大特征值估算所有干扰功率,有效地降低了算法的计算复杂度。基于上述两部分工作设计波束形成器,在保持低复杂度的同时拥有良好的抗误差能力。仿真结果表明,INCM算法对不同种类的误差均具有良好的抵抗能力,能够兼顾计算复杂度和性能。利用软件无线电(software-defined radio, SDR)设备搭建实物验证平台,进一步验证了所提方法优越的抗干扰性能。 展开更多
关键词 鲁棒自适应波束形成技术 干扰加噪声协方差矩阵重构 鲁棒Capon波束形成算法
在线阅读 下载PDF
SFLA算法下综合能源微电网分布式电能鲁棒优化
19
作者 曾绘宁 朱振东 曾权赋 《电子设计工程》 2025年第4期17-20,24,共5页
针对综合能源微电网受可再生能源波动性和不可预测性的影响,导致电能供应波动性较大的问题,采用SFLA算法,优化综合能源微电网分布式电能的鲁棒性。根据综合能源微电网拓扑结构,以最小化日前电能运行成本为目标,构建包括分布式电源成本... 针对综合能源微电网受可再生能源波动性和不可预测性的影响,导致电能供应波动性较大的问题,采用SFLA算法,优化综合能源微电网分布式电能的鲁棒性。根据综合能源微电网拓扑结构,以最小化日前电能运行成本为目标,构建包括分布式电源成本、储能系统储能成本、用电负荷补贴成本、配电网购电成本的目标函数。通过对目标函数对偶处理,得到鲁棒优化模型。使用蛙跳算法(Shuffled Frog-Leaping Algorithm,SFLA)求解,通过计算适应度值,更新组内最差个体,获取当前全局最优解。通过算例得出,在14:00时刻,光伏功率达到极大值为60 kW,07:00时刻,储能功率达到极小值-3 kW,研究方法的微电网分布式电能优化结果与理想情况具有高度一致性。 展开更多
关键词 SFLA算法 综合能源 微电网分布式电能 鲁棒优化 对偶处理
在线阅读 下载PDF
Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm 被引量:3
20
作者 Haipeng Zhang Ke Li +2 位作者 Changzhe Zhao Jie Tang Tiqiao Xiao 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第6期349-357,共9页
Towards efficient implementation of x-ray ghost imaging(XGI),efficient data acquisition and fast image reconstruction together with high image quality are preferred.In view of radiation dose resulted from the incident... Towards efficient implementation of x-ray ghost imaging(XGI),efficient data acquisition and fast image reconstruction together with high image quality are preferred.In view of radiation dose resulted from the incident x-rays,fewer measurements with sufficient signal-to-noise ratio(SNR)are always anticipated.Available methods based on linear and compressive sensing algorithms cannot meet all the requirements simultaneously.In this paper,a method based on a modified compressive sensing algorithm with conjugate gradient descent method(CGDGI)is developed to solve the problems encountered in available XGI methods.Simulation and experiments demonstrate the practicability of CGDGI-based method for the efficient implementation of XGI.The image reconstruction time of sub-second implicates that the proposed method has the potential for real-time XGI. 展开更多
关键词 x-ray ghost imaging modified compressive sensing algorithm real-time x-ray imaging
在线阅读 下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部