On the basis of the acoustoelastic theory for elastic-plastic materials, the influence of statically deformed states including both the elastic and plastic deformations induced by applied uniaxial stresses on the Rayl...On the basis of the acoustoelastic theory for elastic-plastic materials, the influence of statically deformed states including both the elastic and plastic deformations induced by applied uniaxial stresses on the Rayleigh wave in layered rocks is investigated by using a transfer matrix method. The acoustoelastic effects of elastic plastic strains in rocks caused by static deformations, are discussed in detail. The Rayleigh-type and Sezawa modes exhibit similar trends in acoustoelastic effect: the acoustoelastic effect increasing rapidly with the frequency-thickness product and the phase velocity change approaching a constant value for thick layer and high frequency limit. Elastic-plastic deformations in the Castlegate layered rock obviously modify the phase velocity of the Rayleigh wave and the cutoff points for the Sezawa modes. The investigation may be useful for seismic exploration, geotechnical engineering and ultrasonic detection.展开更多
Effective recognition of a coalfield fire area improves fire-fighting efficiency and helps avoid potential geological hazards. Coalfield fire areas are hard to detect accurately using general geophysical methods. This...Effective recognition of a coalfield fire area improves fire-fighting efficiency and helps avoid potential geological hazards. Coalfield fire areas are hard to detect accurately using general geophysical methods. This paper describes simulations of shallow, buried coalfield fires based on real geological conditions. Recognizing the coalfield fire by Rayleigh wave is proposed. Four representative geological models are constructed, namely; the non-burning model, the pseudo-burning model, the real-burning model, and the hidden-burning model. Numerical simulation using these models shows many markedly different characteristics between them in terms of Rayleigh wave dispersion and Eigen displacement. These characteristics, as well as the shear wave velocity obtained by inverting the fundamental dispersion, make it possible to distinguish the type of the coalfield fire area and indentify the real and serious coalfield fire area. The results are very helpful for future application of Rayleigh waves for the detection of coalfield fire area.展开更多
This study concerns calculation of phased array beam fields of the nonlinear Rayleigh surface waves based on the integral solutions for a nonparaxial wave equation. Since the parabolic approximation model for describi...This study concerns calculation of phased array beam fields of the nonlinear Rayleigh surface waves based on the integral solutions for a nonparaxial wave equation. Since the parabolic approximation model for describing the nonlinear Rayleigh waves has certain limitations in modeling the sound beam fields of phased arrays, a more general model equation and integral forms of quasilinear solutions are introduced. Some features of steered and focused beam fields radiated from a linear phased array of the second harmonic Rayleigh wave are presented.展开更多
Topological interface state(TIS)of elastic wave has attracted significant research interest due to its potential prospects in strengthening acoustic energy and enhancing the signal accuracy of damage identification an...Topological interface state(TIS)of elastic wave has attracted significant research interest due to its potential prospects in strengthening acoustic energy and enhancing the signal accuracy of damage identification and quantification.However,previous implementations on the interface modes of surface waves are limited to the non-adjustable frequency band and unalterable mode width.Here,we demonstrate the tunable TIS and topological resonance state(TRS)of Rayleigh wave by using a shape memory alloy(SMA)stubbed semi-infinite one-dimensional(1D)solid phononic crystals(PnCs),which simultaneously possesses the adjustable mode width.The mechanism of tunability stems from the phase transformation of the SMA between the martensite at low temperature and the austenite at high temperature.The tunable TIS of Rayleigh wave is realized by combining two bandgap-opened PnCs with different Zak phases.The TRS with adjustable mode width is achieved in the heterostructures by adding PnCs with Dirac point to the middle of two bandgap-opened PnCs with different Zak phases,which exhibits the extraordinary robustness in contrast to the ordinary Fabry–Perot resonance state.This research provides new possibilities for the highly adjustable Rayleigh wave manipulation and find promising applications such as tunable energy harvesters,wide-mode filters,and high-sensitivity Rayleigh wave detectors.展开更多
The surface response of an infinite viscous-elastic half-space due to a moving load in the tunnel is analyzed. The tunnel is modeled as an inforite long Euler-Bernoulli beam without thickness and the concept of the eq...The surface response of an infinite viscous-elastic half-space due to a moving load in the tunnel is analyzed. The tunnel is modeled as an inforite long Euler-Bernoulli beam without thickness and the concept of the equivalent stiffness is introduced to simulate the half-space. The inverse Fourier transformation and the relative coordinate transform are utilized to transfer a double infinite integral to a double definite integral, which improves the operational efficiency. Then, the analytic solution of the surface response of a half-space due to a moving load in the tunnel is obtained. Finally, the laws of ground vibration responses induced by moving loads in the tunnel are analyzed, considering different tunnel embedded depths and different moving speeds. Results show that the displacement distortion can be obtained by at some special velocities. A theoretical explaination of this phenomenon is provided as well.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10534040 and 40674059) and the Specialized Research Fund for Doctoral Program of Higher Education of China (Grant No 20040183045).
文摘On the basis of the acoustoelastic theory for elastic-plastic materials, the influence of statically deformed states including both the elastic and plastic deformations induced by applied uniaxial stresses on the Rayleigh wave in layered rocks is investigated by using a transfer matrix method. The acoustoelastic effects of elastic plastic strains in rocks caused by static deformations, are discussed in detail. The Rayleigh-type and Sezawa modes exhibit similar trends in acoustoelastic effect: the acoustoelastic effect increasing rapidly with the frequency-thickness product and the phase velocity change approaching a constant value for thick layer and high frequency limit. Elastic-plastic deformations in the Castlegate layered rock obviously modify the phase velocity of the Rayleigh wave and the cutoff points for the Sezawa modes. The investigation may be useful for seismic exploration, geotechnical engineering and ultrasonic detection.
基金funded by the National Key Project (No.2011ZX05035)the State Key Basic Research Program of China(No. 2009CB219603)the Project of Scientific Innovation Research of College Graduate in Jiangsu Province (No. CXLX11-0334).
文摘Effective recognition of a coalfield fire area improves fire-fighting efficiency and helps avoid potential geological hazards. Coalfield fire areas are hard to detect accurately using general geophysical methods. This paper describes simulations of shallow, buried coalfield fires based on real geological conditions. Recognizing the coalfield fire by Rayleigh wave is proposed. Four representative geological models are constructed, namely; the non-burning model, the pseudo-burning model, the real-burning model, and the hidden-burning model. Numerical simulation using these models shows many markedly different characteristics between them in terms of Rayleigh wave dispersion and Eigen displacement. These characteristics, as well as the shear wave velocity obtained by inverting the fundamental dispersion, make it possible to distinguish the type of the coalfield fire area and indentify the real and serious coalfield fire area. The results are very helpful for future application of Rayleigh waves for the detection of coalfield fire area.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61271356 and 51575541the National Research Foundation of Korea under Grant Nos 2013-M2A2A9043241 and 2013-R1A2A2A01016042the Hunan Provincial Innovation Foundation For Postgraduate under Grant No CX2016B046
文摘This study concerns calculation of phased array beam fields of the nonlinear Rayleigh surface waves based on the integral solutions for a nonparaxial wave equation. Since the parabolic approximation model for describing the nonlinear Rayleigh waves has certain limitations in modeling the sound beam fields of phased arrays, a more general model equation and integral forms of quasilinear solutions are introduced. Some features of steered and focused beam fields radiated from a linear phased array of the second harmonic Rayleigh wave are presented.
基金the Doctoral Research Fund of University of South China(Grant No.210XQD016)the Outstanding Youth Foundation of the Hunan Education Department(Grant No.21B0406).
文摘Topological interface state(TIS)of elastic wave has attracted significant research interest due to its potential prospects in strengthening acoustic energy and enhancing the signal accuracy of damage identification and quantification.However,previous implementations on the interface modes of surface waves are limited to the non-adjustable frequency band and unalterable mode width.Here,we demonstrate the tunable TIS and topological resonance state(TRS)of Rayleigh wave by using a shape memory alloy(SMA)stubbed semi-infinite one-dimensional(1D)solid phononic crystals(PnCs),which simultaneously possesses the adjustable mode width.The mechanism of tunability stems from the phase transformation of the SMA between the martensite at low temperature and the austenite at high temperature.The tunable TIS of Rayleigh wave is realized by combining two bandgap-opened PnCs with different Zak phases.The TRS with adjustable mode width is achieved in the heterostructures by adding PnCs with Dirac point to the middle of two bandgap-opened PnCs with different Zak phases,which exhibits the extraordinary robustness in contrast to the ordinary Fabry–Perot resonance state.This research provides new possibilities for the highly adjustable Rayleigh wave manipulation and find promising applications such as tunable energy harvesters,wide-mode filters,and high-sensitivity Rayleigh wave detectors.
文摘The surface response of an infinite viscous-elastic half-space due to a moving load in the tunnel is analyzed. The tunnel is modeled as an inforite long Euler-Bernoulli beam without thickness and the concept of the equivalent stiffness is introduced to simulate the half-space. The inverse Fourier transformation and the relative coordinate transform are utilized to transfer a double infinite integral to a double definite integral, which improves the operational efficiency. Then, the analytic solution of the surface response of a half-space due to a moving load in the tunnel is obtained. Finally, the laws of ground vibration responses induced by moving loads in the tunnel are analyzed, considering different tunnel embedded depths and different moving speeds. Results show that the displacement distortion can be obtained by at some special velocities. A theoretical explaination of this phenomenon is provided as well.