This article addresses a stochastic ratio-dependent predator-prey system with Leslie-Gower and Holling type II schemes. Firstly, the existence of the global positive solution is shown by the comparison theorem of stoc...This article addresses a stochastic ratio-dependent predator-prey system with Leslie-Gower and Holling type II schemes. Firstly, the existence of the global positive solution is shown by the comparison theorem of stochastic differential equations. Secondly, in the case of persistence, we prove that there exists a ergodic stationary distribution. Finally, numerical simulations for a hypothetical set of parameter values are presented to illustrate the analytical findings.展开更多
This article is concerned with the existence of traveling wave solutions for a discrete diffusive ratio-dependent predator-prey model. By applying Schauder’s fixed point theorem with the help of suitable upper and lo...This article is concerned with the existence of traveling wave solutions for a discrete diffusive ratio-dependent predator-prey model. By applying Schauder’s fixed point theorem with the help of suitable upper and lower solutions, we prove that there exists a positive constant c* such that when c > c* , the discrete diffusive predator-prey system admits an invasion traveling wave. The existence of an invasion traveling wave with c = c* is also established by a limiting argument and a delicate analysis of the boundary conditions.Finally, by the asymptotic spreading theory and the comparison principle, the non-existence of invasion traveling waves with speed c < c* is also proved.展开更多
This paper presents a theoretical analysis of evolutionary process that involves organisms distribution and their interaction of spatially distributed population with diffusion in a Holling-III ratio-dependent predato...This paper presents a theoretical analysis of evolutionary process that involves organisms distribution and their interaction of spatially distributed population with diffusion in a Holling-III ratio-dependent predator-prey model, the sufficient conditions for diffusion-driven instability with Neumann boundary conditions are obtained. Furthermore, it presents novel numerical evidence of time evolution of patterns controlled by diffusion in the model, and finds that the model dynamics exhibits complex pattern replication, and the pattern formation depends on the choice of the initial conditions. The ideas in this paper may provide a better understanding of the pattern formation in ecosystems.展开更多
Influences of prey refuge on the dynamics of a predator-prey model with ratio-dependent functional response are investigated. The local and global stability of positive equilibrium of the system are considered. Theore...Influences of prey refuge on the dynamics of a predator-prey model with ratio-dependent functional response are investigated. The local and global stability of positive equilibrium of the system are considered. Theoretical analysis indicates that constant refuge leads to the system undergo supercritical Hopf bifurcation twice with the birth rate of prey species changing continuously.展开更多
This paper deals with the global dynamical behaviors of the positive solutions for a parabolic type ratio-dependent predator-prey system with a crowding term in the prey equation, where it is assumed that the coeffici...This paper deals with the global dynamical behaviors of the positive solutions for a parabolic type ratio-dependent predator-prey system with a crowding term in the prey equation, where it is assumed that the coefficient of the functional response is less than the coefficient of the intrinsic growth rates of the prey species. We demonstrated some special dynamical behaviors of the positive solutions of this system which the persistence of the coexistence of two species can be obtained when the crowding region in the prey equation only is designed suitably. Furthermore, we can obtain that under some conditions, the unique positive steady state solution of the system is globally asymptotically stable.展开更多
基金supported by NSFC of China Grant(11371085)the Fundamental Research Funds for the Central Universities(15CX08011A)
文摘This article addresses a stochastic ratio-dependent predator-prey system with Leslie-Gower and Holling type II schemes. Firstly, the existence of the global positive solution is shown by the comparison theorem of stochastic differential equations. Secondly, in the case of persistence, we prove that there exists a ergodic stationary distribution. Finally, numerical simulations for a hypothetical set of parameter values are presented to illustrate the analytical findings.
基金supported by NSF of China(11861056)Gansu Provincial Natural Science Foundation(18JR3RA093).
文摘This article is concerned with the existence of traveling wave solutions for a discrete diffusive ratio-dependent predator-prey model. By applying Schauder’s fixed point theorem with the help of suitable upper and lower solutions, we prove that there exists a positive constant c* such that when c > c* , the discrete diffusive predator-prey system admits an invasion traveling wave. The existence of an invasion traveling wave with c = c* is also established by a limiting argument and a delicate analysis of the boundary conditions.Finally, by the asymptotic spreading theory and the comparison principle, the non-existence of invasion traveling waves with speed c < c* is also proved.
基金supported by the Natural Science Foundation of Zhejiang Province of China (Grant No.Y7080041)
文摘This paper presents a theoretical analysis of evolutionary process that involves organisms distribution and their interaction of spatially distributed population with diffusion in a Holling-III ratio-dependent predator-prey model, the sufficient conditions for diffusion-driven instability with Neumann boundary conditions are obtained. Furthermore, it presents novel numerical evidence of time evolution of patterns controlled by diffusion in the model, and finds that the model dynamics exhibits complex pattern replication, and the pattern formation depends on the choice of the initial conditions. The ideas in this paper may provide a better understanding of the pattern formation in ecosystems.
基金Supported by the NNSF of China(11126284)Supported by the NSF of Department of Education of Henan Province(12A110012)Supported by the Young Scientific Research Foundation of Henan Normal University(1001)
文摘Influences of prey refuge on the dynamics of a predator-prey model with ratio-dependent functional response are investigated. The local and global stability of positive equilibrium of the system are considered. Theoretical analysis indicates that constant refuge leads to the system undergo supercritical Hopf bifurcation twice with the birth rate of prey species changing continuously.
基金supported by the National Natural Science Foundation of China(11271120,11426099)the Project of Hunan Natural Science Foundation of China(13JJ3085)
文摘This paper deals with the global dynamical behaviors of the positive solutions for a parabolic type ratio-dependent predator-prey system with a crowding term in the prey equation, where it is assumed that the coefficient of the functional response is less than the coefficient of the intrinsic growth rates of the prey species. We demonstrated some special dynamical behaviors of the positive solutions of this system which the persistence of the coexistence of two species can be obtained when the crowding region in the prey equation only is designed suitably. Furthermore, we can obtain that under some conditions, the unique positive steady state solution of the system is globally asymptotically stable.