期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Synchronization of chaos using radial basis functions neural networks 被引量:2
1
作者 Ren Haipeng Liu Ding 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期83-88,100,共7页
The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response syst... The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response system can be implemented by employing the RBFNN model and state feedback control. In this case, the exact mathematical model, which is the precondition for the conventional method, is unnecessary for implementing synchronization. The effect of the model error is investigated and a corresponding theorem is developed. The effect of the parameter perturbations and the measurement noise is investigated through simulations. The simulation results under different conditions show the effectiveness of the method. 展开更多
关键词 Chaos synchronization radial basis function neural networks Model error Parameter perturbation Measurement noise.
在线阅读 下载PDF
An Adaptive Identification and Control SchemeUsing Radial Basis Function Networks 被引量:2
2
作者 Chen Zengqiang He Jiangfeng Yuan Zhuzhi (Department of Computer and System Science, Nankai University, Tianjin 300071, P. R. China)(Received July 12, 1998) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1999年第1期54-61,共8页
In this paper, adaptive identification and control of nonlinear dynamical systems are investigated using radial basis function networks (RBF). Firstly, a novel approach to train the RBF is introduced, which employs an... In this paper, adaptive identification and control of nonlinear dynamical systems are investigated using radial basis function networks (RBF). Firstly, a novel approach to train the RBF is introduced, which employs an adaptive fuzzy generalized learning vector quantization (AFGLVQ) technique and recursive least squares algorithm with variable forgetting factor (VRLS). The AFGLVQ adjusts the centers of the RBF while the VRLS updates the connection weights of the network. The identification algorithm has the properties of rapid convergence and persistent adaptability that make it suitable for real-time control. Secondly, on the basis of the one-step ahead RBF predictor, the control law is optimized iteratively through a numerical stable Davidon's least squares-based (SDLS) minimization approach. Four nonlinear examples are simulated to demonstrate the effectiveness of the identification and control algorithms. 展开更多
关键词 Neural networks Adaptive control Nonlinear control radial basis function networks Recursive least squares.
在线阅读 下载PDF
Adaptive integral dynamic surface control based on fully tuned radial basis function neural network 被引量:2
3
作者 Li Zhou Shumin Fei Changsheng Jiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期1072-1078,共7页
An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wid... An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wide class of uncertainties that are not linearly parameterized and do not have any prior knowledge of the bounding functions.FTRBFNN is employed to approximate the uncertainty online,and a systematic framework for adaptive controller design is given by dynamic surface control. The control algorithm has two outstanding features,namely,the neural network regulates the weights,width and center of Gaussian function simultaneously,which ensures the control system has perfect ability of restraining different unknown uncertainties and the integral term of tracking error introduced in the control law can eliminate the static error of the closed loop system effectively. As a result,high control precision can be achieved.All signals in the closed loop system can be guaranteed bounded by Lyapunov approach.Finally,simulation results demonstrate the validity of the control approach. 展开更多
关键词 adaptive control integral dynamic surface control fully tuned radial basis function neural network.
在线阅读 下载PDF
基于混合双层自组织径向基函数神经网络的优化学习算法
4
作者 杨彦霞 王普 +2 位作者 高学金 高慧慧 齐泽洋 《北京工业大学学报》 CAS CSCD 北大核心 2024年第1期38-49,共12页
针对传统方法采用先训练后测试两阶段学习机制极易导致的过拟合或欠拟合问题,提出一种基于混合双层自组织径向基函数神经网络的优化学习(hybrid bilevel self-organizing radial basis function neural network optimization learning,H... 针对传统方法采用先训练后测试两阶段学习机制极易导致的过拟合或欠拟合问题,提出一种基于混合双层自组织径向基函数神经网络的优化学习(hybrid bilevel self-organizing radial basis function neural network optimization learning,Hb-SRBFNN-OL)算法。首先,将训练过程和测试过程集成到一个统一的框架中,规避过拟合或欠拟合问题。其次,基于进化学习机制,提出上下2层的交互式优化学习算法,上层基于网络复杂度和测试误差自组织调整网络结构,下层采用列文伯格-马夸尔特(Levenberg Marquardt,LM)算法作为优化器对自组织径向基函数神经网络(self-organizing radial basis function neural network,SO-RBFNN)的连接权值进行优化。最后,利用来自多个子网络的综合信息生成模型的最终输出,加速网络全局收敛。为验证所提方法的可行性,分别在多个分类和预测任务中进行了测试实验。结果表明,在与传统神经网络结构相似甚至更好的测试和分类精度下,该方法不仅能实现更快的训练收敛,而且能进化成更精简紧凑的径向基函数神经网络(radial basis function neural network,RBFNN)模型。尤其在污水处理过程中总磷的质量浓度预测实验中,测试集中均方根误差(root mean squared error,RMSE)最高可降低48.90%,实际场景实验结果验证了所提算法的精确性更佳且泛化能力更强。 展开更多
关键词 径向基函数神经网络(radial basis function neural network RBFNN) 自组织 列文伯格-马夸尔特(Levenberg Marquardt LM)算法 混合双层 优化学习 泛化性能
在线阅读 下载PDF
Product quality prediction based on RBF optimized by firefly algorithm 被引量:3
5
作者 HAN Huihui WANG Jian +1 位作者 CHEN Sen YAN Manting 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期105-117,共13页
With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality pred... With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality. 展开更多
关键词 product quality prediction data pre-processing radial basis function swarm intelligence optimization algorithm
在线阅读 下载PDF
Target maneuver trajectory prediction based on RBF neural network optimized by hybrid algorithm 被引量:12
6
作者 XI Zhifei XU An +2 位作者 KOU Yingxin LI Zhanwu YANG Aiwu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期498-516,共19页
Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a ta... Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a target maneuver trajectory prediction model based on phase space reconstruction-radial basis function(PSR-RBF)neural network is established by combining the characteristics of trajectory with time continuity.In order to further improve the prediction performance of the model,the rival penalized competitive learning(RPCL)algorithm is introduced to determine the structure of RBF,the Levenberg-Marquardt(LM)and the hybrid algorithm of the improved particle swarm optimization(IPSO)algorithm and the k-means are introduced to optimize the parameter of RBF,and a PSR-RBF neural network is constructed.An independent method of 3D coordinates of the target maneuver trajectory is proposed,and the target manuver trajectory sample data is constructed by using the training data selected in the air combat maneuver instrument(ACMI),and the maneuver trajectory prediction model based on the PSR-RBF neural network is established.In order to verify the precision and real-time performance of the trajectory prediction model,the simulation experiment of target maneuver trajectory is performed.The results show that the prediction performance of the independent method is better,and the accuracy of the PSR-RBF prediction model proposed is better.The prediction confirms the effectiveness and applicability of the proposed method and model. 展开更多
关键词 trajectory prediction K-MEANS improved particle swarm optimization(IPSO) Levenberg-Marquardt(LM) radial basis function(RBF)neural network
在线阅读 下载PDF
Global approximation based adaptive RBF neural network control for supercavitating vehicles 被引量:12
7
作者 LI Yang LIU Mingyong +1 位作者 ZHANG Xiaojian PENG Xingguang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第4期797-804,共8页
A global approximation based adaptive radial basis function(RBF) neural network control strategy is proposed for the trajectory tracking control of supercavitating vehicles(SV).A nominal model is built firstly wit... A global approximation based adaptive radial basis function(RBF) neural network control strategy is proposed for the trajectory tracking control of supercavitating vehicles(SV).A nominal model is built firstly with the unknown disturbance.Next, the control scheme is established consisting of a computed torque controller(CTC) for the practical vehicle and an RBF neural network controller to estimate model error between the practical vehicle and the nominal model. The network weights are adapted by employing a Lyapunov-based design. Then it is shown by the Lyapunov theory that the trajectory tracking errors asymptotically converge to a small neighborhood of zero. The control performance of the proposed controller is illustrated by simulation. 展开更多
关键词 radial basis function (RBF) neural network computedtorque controller (CTC) adaptive control supercavitating vehicle(SV)
在线阅读 下载PDF
Trajectory linearization control of an aerospace vehicle based on RBF neural network 被引量:6
8
作者 Xue Yali Jiang Changsheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第4期799-805,共7页
An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The infl... An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The influence of unknown disturbances and uncertainties is reduced by RBFNN thanks to its approaching ability, and a robustifying itera is used to overcome the approximate error of RBFNN. The parameters adaptive adjusting laws are designed on the Lyapunov theory. The uniform ultimate boundedness of all signals of the composite closed-loop system is proved based on Lyapunov theory. Finally, the flight control system of an ASV is designed based on the proposed method. Simulation results demonstrate the effectiveness and robustness of the designed approach. 展开更多
关键词 adaptive control trajectory linearization control radial basis function neural network aerospace vehicle.
在线阅读 下载PDF
Application of neural networks for permanent magnet synchronous motor direct torque control 被引量:6
9
作者 Zhang Chunmei Liu Heping +1 位作者 Chen Shujin Wang Fangjun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期555-561,共7页
Neural networks require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergence remain as areas of research and comparison of many training a... Neural networks require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergence remain as areas of research and comparison of many training algorithms. The application of neural networks to control interior permanent magnet synchronous motor using direct torque control (DTC) is discussed. A neural network is used to emulate the state selector of the DTC. The neural networks used are the back-propagation and radial basis function. To reduce the training patterns and increase the execution speed of the training process, the inputs of switching table are converted to digital signals, i.e., one bit represent the flux error, one bit the torque error, and three bits the region of stator flux. Computer simulations of the motor and neural-network system using the two approaches are presented and compared. Discussions about the back-propagation and radial basis function as the most promising training techniques are presented, giving its advantages and disadvantages. The system using back-propagation and radial basis function networks controller has quick parallel speed and high torque response. 展开更多
关键词 interior permanent magnet synchronous motor radial basis function neural network torque control direct torque control.
在线阅读 下载PDF
Robust adaptive control of hypersonic vehicle considering inlet unstart 被引量:6
10
作者 WANG Fan FAN Pengfei +2 位作者 FAN Yonghua XU Bin YAN Jie 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第1期188-196,共9页
In this paper,a model reference adaptive control(MRAC)augmentation method of a linear controller is proposed for air-breathing hypersonic vehicle(AHV)during inlet unstart.With the development of hypersonic flight tech... In this paper,a model reference adaptive control(MRAC)augmentation method of a linear controller is proposed for air-breathing hypersonic vehicle(AHV)during inlet unstart.With the development of hypersonic flight technology,hypersonic vehicles have been gradually moving to the stage of weaponization.During the maneuvers,changes of attitude,Mach number and the back pressure can cause the inlet unstart phenomenon of scramjet.Inlet unstart causes significant changes in the aerodynamics of AHV,which may lead to deterioration of the tracking performance or instability of the control system.Therefore,we firstly establish the model of hypersonic vehicle considering inlet unstart,in which the changes of aerodynamics caused by inlet unstart is described as nonlinear uncertainty.Then,an MRAC augmentation method of a linear controller is proposed and the radial basis function(RBF)neural network is used to schedule the adaptive parameters of MRAC.Furthermore,the Lyapunov function is constructed to prove the stability of the proposed method.Finally,numerical simulations show that compared with the linear control method,the proposed method can stabilize the attitude of the hypersonic vehicle more quickly after the inlet unstart,which provides favorable conditions for inlet restart,thus verifying the effectiveness of the augmentation method proposed in the paper. 展开更多
关键词 air-breathing hypersonic vehicle(AHV) inlet unstart model reference adaptive control augmentation(MRAC) radial basis function(RBF)neural network
在线阅读 下载PDF
Effect of composition and aging time on hardness and wear behavior of Cu-Ni-Sn spinodal alloy 被引量:3
11
作者 S.ILANGOVAN R.VAIRA VIGNESH +1 位作者 R.PADMANABAN J.GOKULACHANDRAN 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2634-2642,共9页
Copper alloyed with various compositions of nickel and tin were cast into molds under argon atmosphere.The cast rods were homogenized,solution heat treated,followed by aging for different time duration.The specimens w... Copper alloyed with various compositions of nickel and tin were cast into molds under argon atmosphere.The cast rods were homogenized,solution heat treated,followed by aging for different time duration.The specimens were characterized for microstructure and tested for microhardness and wear rate.A hybrid model with a linear function and radial basis function was developed to analyze the influence of nickel,tin,and aging time on the microhardness and tribological behavior of copper-nickel-sin alloy system.The results indicate that increase in the composition of nickel and tin increases the microhardness and decreases the wear rate of the alloy.The increase in the concentration of nickel and tin decreases the peak aging time of the alloy system. 展开更多
关键词 spinodal decomposition MICROHARDNESS WEAR radial basis function model
在线阅读 下载PDF
An ICPSO-RBFNN nonlinear inversion for electrical resistivity imaging 被引量:3
12
作者 江沸菠 戴前伟 董莉 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期2129-2138,共10页
To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network(RBFNN) based on information crite... To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network(RBFNN) based on information criterion(IC) and particle swarm optimization(PSO) is presented. In the proposed method, IC is applied to obtain the hidden layer structure by calculating the optimal IC value automatically and PSO algorithm is used to optimize the centers and widths of the radial basis functions in the hidden layer. Meanwhile, impacts of different information criteria to the inversion results are compared, and an implementation of the proposed ICPSO algorithm is given. The optimized neural network has one hidden layer with 261 nodes selected by AKAIKE's information criterion(AIC) and it is trained on 32 data sets and tested on another 8 synthetic data sets. Two complex synthetic examples are used to verify the feasibility and effectiveness of the proposed method with two learning stages. The results show that the proposed method has better performance and higher imaging quality than three-layer and four-layer back propagation neural networks(BPNNs) and traditional least square(LS) inversion. 展开更多
关键词 electrical resistivity imaging nonlinear inversion information criterion(IC) radial basis function neural network(RBFNN) particle swarm optimization(PSO)
在线阅读 下载PDF
Prediction of dust fall concentrations in urban atmospheric environment through support vector regression 被引量:2
13
作者 焦胜 曾光明 +3 位作者 何理 黄国和 卢宏玮 高青 《Journal of Central South University》 SCIE EI CAS 2010年第2期307-315,共9页
Support vector regression (SVR) method is a novel type of learning machine algorithms, which is seldom applied to the development of urban atmospheric quality models under multiple socio-economic factors. This study... Support vector regression (SVR) method is a novel type of learning machine algorithms, which is seldom applied to the development of urban atmospheric quality models under multiple socio-economic factors. This study presents four SVR models by selecting linear, radial basis, spline, and polynomial functions as kernels, respectively for the prediction of urban dust fall levels. The inputs of the models are identified as industrial coal consumption, population density, traffic flow coefficient, and shopping density coefficient. The training and testing results show that the SVR model with radial basis kernel performs better than the other three both in the training and testing processes. In addition, a number of scenario analyses reveal that the most suitable parameters (insensitive loss function e, the parameter to reduce the influence of error C, and discrete level or average distribution of parameters σ) are 0.001, 0.5, and 2 000, respectively. 展开更多
关键词 support vector regression urban air quality dust fall soeio-economic factors radial basis function
在线阅读 下载PDF
Vision-based behavior prediction of ball carrier in basketball matches 被引量:2
14
作者 夏利民 王千 吴联世 《Journal of Central South University》 SCIE EI CAS 2012年第8期2142-2151,共10页
A new vision-based approach was presented for predicting the behavior of the ball carrier—shooting, passing and dribbling in basketball matches. It was proposed to recognize the ball carrier’s head pose by classifyi... A new vision-based approach was presented for predicting the behavior of the ball carrier—shooting, passing and dribbling in basketball matches. It was proposed to recognize the ball carrier’s head pose by classifying its yaw angle to determine his vision range and the court situation of the sportsman within his vision range can be further learned. In basketball match videos characterized by cluttered background, fast motion of the sportsmen and low resolution of their head images, and the covariance descriptor, were adopted to fuse multiple visual features of the head region, which can be seen as a point on the Riemannian manifold and then mapped to the tangent space. Then, the classification of head yaw angle was directly completed in this space through the trained multiclass LogitBoost. In order to describe the court situation of all sportsmen within the ball carrier’s vision range, artificial potential field (APF)-based information was introduced. Finally, the behavior of the ball carrier—shooting, passing and dribbling, was predicted using radial basis function (RBF) neural network as the classifier. Experimental results show that the average prediction accuracy of the proposed method can reach 80% on the video recorded in basketball matches, which validates its effectiveness. 展开更多
关键词 covariance descriptor tangent space LogitBoost artificial potential field radial basis function neural network
在线阅读 下载PDF
Investigating the Synthesis of RBF Networks 被引量:2
15
作者 V. David Sanchez A.(German Aerospace Research Establishment, DLR OberpfaffenhofenInstitute for Robottes and System DynamicsD-82230 Wessling, Germany) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1996年第3期25-29,共5页
The approximation capability of RBF networks is investigated using a test function and a fixed finite number of training data. The test function used allows to confirm the recently introducedconcept of second derivati... The approximation capability of RBF networks is investigated using a test function and a fixed finite number of training data. The test function used allows to confirm the recently introducedconcept of second derivative dependent placement of RBF centers. Different Gaussian RBF networksare trained varying the width and the number of centers (number of hidden units). The dependenceof the approximation error on these network parameters is studied experimentally. 展开更多
关键词 Approximation error function approximation Neural network synthesis Number of hidden units radial basis functions.
在线阅读 下载PDF
Modeling and optimum operating conditions for FCCU using artificial neural network 被引量:6
16
作者 李全善 李大字 曹柳林 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1342-1349,共8页
A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF ... A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF neural network with the initial parameters obtained by k-means learning method. During the iteration procedure of the algorithm, the centers of the neural network were optimized by using the gradient method with these optimized width values. The computational efficiency was maintained by using the multi-threading technique. SODM-RBFNN consists of two RBF neural network models: one is a running model used to predict the product yields of fluid catalytic cracking unit(FCCU) and optimize its operating parameters; the other is a learning model applied to construct or correct a RBF neural network. The running model can be updated by the learning model according to an accuracy criterion. The simulation results of a five-lump kinetic model exhibit its accuracy and generalization capabilities, and practical application in FCCU illustrates its effectiveness. 展开更多
关键词 radial basis function(RBF) neural network self-organizing gradient descent double-model fluid catalytic cracking unit(FCCU)
在线阅读 下载PDF
Hardware-in-loop adaptive neural control for a tiltable V-tail morphing aircraft 被引量:1
17
作者 Fu-xiang Qiao Jing-ping Shi +1 位作者 Xiao-bo Qu Yong-xi Lyu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第4期197-211,共15页
This paper proposes an adaptive neural control(ANC)method for the coupled nonlinear model of a novel type of embedded surface morphing aircraft which has a tiltable V-tail.A nonlinear model with sixdegrees-of-freedom ... This paper proposes an adaptive neural control(ANC)method for the coupled nonlinear model of a novel type of embedded surface morphing aircraft which has a tiltable V-tail.A nonlinear model with sixdegrees-of-freedom is established.The first-order sliding mode differentiator(FSMD)is applied to the control scheme to avoid the problem of“differential explosion”.Radial basis function neural networks are introduced to estimate the uncertainty and external disturbance of the model,and an ANC controller is proposed based on this design idea.The stability of the proposed ANC controller is proved using Lyapunov theory,and the tracking error of the closed-loop system is semi-globally uniformly bounded.The effectiveness and robustness of the proposed method are verified by numerical simulations and hardware-in-the-loop(HIL)simulations. 展开更多
关键词 Morphing aircraft Back-stepping control Adaptive control Neural networks radial basis function
在线阅读 下载PDF
Construction of compact RBF network by refining coarse clusters and widths 被引量:1
18
作者 Zeng Delu Zhou Zhiheng Xie Shengli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第6期1309-1315,共7页
It is known that centers, widths, and weights are three mainly considered factors in constructing a radial basis function(RBF) network.This paper aims at constructing a compact RBF network with two main steps.In the... It is known that centers, widths, and weights are three mainly considered factors in constructing a radial basis function(RBF) network.This paper aims at constructing a compact RBF network with two main steps.In the first step, the coarse clusters computed from triangle inequalities are refined to obtain the locations of centers by the defined maximum degree spanning tree(MDST).Meanwhile the coarse widths are obtained.In the second step, a learning algorithm referred to as anisotropic gradient descent method is presented to further refine the above coarse widths.Experiments of the proposed algorithm show its great performance in times series prediction and classification. 展开更多
关键词 CLUSTERING anisotropic gradient descent radial basis function time series prediction boundary extraction.
在线阅读 下载PDF
Neural network modeling and control of proton exchange membrane fuel cell 被引量:1
19
作者 陈跃华 曹广益 朱新坚 《Journal of Central South University of Technology》 EI 2007年第1期84-87,共4页
A neural network model and fuzzy neural network controller was designed to control the inner impedance of a proton exchange membrane fuel cell (PEMFC) stack. A radial basis function (RBF) neural network model was trai... A neural network model and fuzzy neural network controller was designed to control the inner impedance of a proton exchange membrane fuel cell (PEMFC) stack. A radial basis function (RBF) neural network model was trained by the input-output data of impedance. A fuzzy neural network controller was designed to control the impedance response. The RBF neural network model was used to test the fuzzy neural network controller. The results show that the RBF model output can imitate actual output well, the maximal error is not beyond 20 m-, the training time is about 1 s by using 20 neurons, and the mean squared errors is 141.9 m-2. The impedance of the PEMFC stack is controlled within the optimum range when the load changes, and the adjustive time is about 3 min. 展开更多
关键词 proton exchange membrane fuel cell radial basis function neural network fuzzy neural network
在线阅读 下载PDF
Reliability Sensitivity Analysis for Location Scale Family
20
作者 洪东跑 张海瑞 《Defence Technology(防务技术)》 SCIE EI CAS 2011年第3期188-192,共5页
Many products always operate under various complex environment conditions. To describe the dynamic influence of environment factors on their reliability, a method of reliability sensitivity analysis is proposed. In th... Many products always operate under various complex environment conditions. To describe the dynamic influence of environment factors on their reliability, a method of reliability sensitivity analysis is proposed. In this method, the location parameter is assumed as a function of relevant environment variables while the scale parameter is assumed as an unknown positive constant. Then, the location parameter function is constructed by using the method of radial basis function. Using the varied environment test data, the log-likelihood function is transformed to a generalized linear expression by describing the indicator as Poisson variable. With the generalized linear model, the maximum likelihood estimations of the model coefficients are obtained. With the reliability model, the reliability sensitivity is obtained. An instance analysis shows that the method is feasible to analyze the dynamic variety characters of reliability along with environment factors and is straightforward for engineering application. 展开更多
关键词 system engineering RELIABILITY sensitivity analysis environment factor location scale family radial basis function generalized linear model
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部