期刊文献+
共找到1,438篇文章
< 1 2 72 >
每页显示 20 50 100
Synchronization of chaos using radial basis functions neural networks 被引量:2
1
作者 Ren Haipeng Liu Ding 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期83-88,100,共7页
The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response syst... The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response system can be implemented by employing the RBFNN model and state feedback control. In this case, the exact mathematical model, which is the precondition for the conventional method, is unnecessary for implementing synchronization. The effect of the model error is investigated and a corresponding theorem is developed. The effect of the parameter perturbations and the measurement noise is investigated through simulations. The simulation results under different conditions show the effectiveness of the method. 展开更多
关键词 Chaos synchronization radial basis function neural networks Model error Parameter perturbation Measurement noise.
在线阅读 下载PDF
An Adaptive Identification and Control SchemeUsing Radial Basis Function Networks 被引量:2
2
作者 Chen Zengqiang He Jiangfeng Yuan Zhuzhi (Department of Computer and System Science, Nankai University, Tianjin 300071, P. R. China)(Received July 12, 1998) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1999年第1期54-61,共8页
In this paper, adaptive identification and control of nonlinear dynamical systems are investigated using radial basis function networks (RBF). Firstly, a novel approach to train the RBF is introduced, which employs an... In this paper, adaptive identification and control of nonlinear dynamical systems are investigated using radial basis function networks (RBF). Firstly, a novel approach to train the RBF is introduced, which employs an adaptive fuzzy generalized learning vector quantization (AFGLVQ) technique and recursive least squares algorithm with variable forgetting factor (VRLS). The AFGLVQ adjusts the centers of the RBF while the VRLS updates the connection weights of the network. The identification algorithm has the properties of rapid convergence and persistent adaptability that make it suitable for real-time control. Secondly, on the basis of the one-step ahead RBF predictor, the control law is optimized iteratively through a numerical stable Davidon's least squares-based (SDLS) minimization approach. Four nonlinear examples are simulated to demonstrate the effectiveness of the identification and control algorithms. 展开更多
关键词 Neural networks Adaptive control Nonlinear control radial basis function networks Recursive least squares.
在线阅读 下载PDF
Adaptive integral dynamic surface control based on fully tuned radial basis function neural network 被引量:2
3
作者 Li Zhou Shumin Fei Changsheng Jiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期1072-1078,共7页
An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wid... An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wide class of uncertainties that are not linearly parameterized and do not have any prior knowledge of the bounding functions.FTRBFNN is employed to approximate the uncertainty online,and a systematic framework for adaptive controller design is given by dynamic surface control. The control algorithm has two outstanding features,namely,the neural network regulates the weights,width and center of Gaussian function simultaneously,which ensures the control system has perfect ability of restraining different unknown uncertainties and the integral term of tracking error introduced in the control law can eliminate the static error of the closed loop system effectively. As a result,high control precision can be achieved.All signals in the closed loop system can be guaranteed bounded by Lyapunov approach.Finally,simulation results demonstrate the validity of the control approach. 展开更多
关键词 adaptive control integral dynamic surface control fully tuned radial basis function neural network.
在线阅读 下载PDF
DETERMINING THE STRUCTURES AND PARAMETERS OF RADIAL BASIS FUNCTION NEURAL NETWORKS USING IMPROVED GENETIC ALGORITHMS 被引量:1
4
作者 Meiqin Liu Jida Chen 《Journal of Central South University》 SCIE EI CAS 1998年第2期68-73,共6页
The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error t... The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error term is used as the best criterion of optimizing the structures and parameters of networks. It is shown from the simulation results that the method not only improves the approximation and generalization capability of RBFNNs ,but also obtain the optimal or suboptimal structures of networks. 展开更多
关键词 radial basis function NEURAL network GENETIC algorithms Akaike′s information CRITERION OVERFITTING
在线阅读 下载PDF
Research on motion compensation method based on neural network of radial basis function
5
作者 Zuo Yunbo 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第S2期215-218,共4页
The machining precision not only depends on accurate mechanical structure but also depends on motion compensation method. If manufacturing precision of mechanical structure cannot be improved, the motion compensation ... The machining precision not only depends on accurate mechanical structure but also depends on motion compensation method. If manufacturing precision of mechanical structure cannot be improved, the motion compensation is a reasonable way to improve motion precision. A motion compensation method based on neural network of radial basis function(RBF) was presented in this paper. It utilized the infinite approximation advantage of RBF neural network to fit the motion error curve. The best hidden neural quantity was optimized by training the motion error data and calculating the total sum of squares. The best curve coefficient matrix was got and used to calculate motion compensation values. The experiments showed that the motion errors could be reduced obviously by utilizing the method in this paper. 展开更多
关键词 MOTION COMPENSATION NEURAL network radial basis function
在线阅读 下载PDF
光强—波长模型和RBFN相融合的光谱共焦信号峰值提取方法
6
作者 周鹏 吴运权 +2 位作者 彭秋然 常素萍 卢文龙 《中国测试》 北大核心 2025年第1期69-74,共6页
提出一种光强-波长模型和径向基函数网络(radial basis function network,RBFN)相融合的光谱共焦信号峰值提取算法,简称RBFN-I-λ。首先通过高斯拟合法拟合离散光谱响应信号的差分信号粗略得到初始峰值波长,然后基于泰勒近似法得到理想... 提出一种光强-波长模型和径向基函数网络(radial basis function network,RBFN)相融合的光谱共焦信号峰值提取算法,简称RBFN-I-λ。首先通过高斯拟合法拟合离散光谱响应信号的差分信号粗略得到初始峰值波长,然后基于泰勒近似法得到理想峰值波长并计算初始峰值波长和理想峰值波长之间的波长差,最后利用RBFN-I-λ建立光谱共焦响应信号与波长描述误差之间的映射关系。实验结果表明,RBFN-I-λ算法的精度与传统抛物线法、质心法和高斯拟合法等方法相比,至少提升30%。 展开更多
关键词 光谱共焦 径向基函数网络 泰勒近似 波长描述误差
在线阅读 下载PDF
基于GRU-RBFNN车速预测的A-ECMS能量管理策略
7
作者 李昕光 王文超 元佳宇 《计算机应用与软件》 北大核心 2025年第3期34-40,共7页
为进一步提高混合动力汽车的燃油经济性,提出一种基于车速预测的自适应等效燃油消耗最小策略(Adaptive Equivalent Consumption Minimization Strategy,A-ECMS)。应用VISSIM软件建立实地微观交通仿真模型并获取交通信息,基于PyTorch框... 为进一步提高混合动力汽车的燃油经济性,提出一种基于车速预测的自适应等效燃油消耗最小策略(Adaptive Equivalent Consumption Minimization Strategy,A-ECMS)。应用VISSIM软件建立实地微观交通仿真模型并获取交通信息,基于PyTorch框架搭建考虑时空特征的门控循环单元-径向基神经网络预测模型。在MATLAB/Simulink/Stateflow中建立混合动力汽车动力学模型,对基于车速预测的A-ECMS与固定等效燃油消耗最小策略(F-ECMS)进行对比研究,仿真结果表明,A-ECMS相较于F-ECMS,SOC波动更小,汽车燃油经济性提升8.97%。 展开更多
关键词 门控循环单元 径向基神经网络 车速预测 并联式混合动力汽车 等效燃油消耗最小策略
在线阅读 下载PDF
高速列车纵向动力学建模与自适应RBFNN控制 被引量:3
8
作者 付雅婷 胡东亮 +1 位作者 杨辉 欧阳超明 《铁道学报》 EI CAS CSCD 北大核心 2024年第1期42-52,共11页
高速列车由多节车厢链接而成的结构特性导致其高速运行在变路况线路条件下难以有效地对其进行优化控制。针对上述问题,提出一种高速列车纵向动力学模型与径向基函数神经网络(RBFNN)控制策略。考虑列车车钩力和复杂线路条件,分析整列车... 高速列车由多节车厢链接而成的结构特性导致其高速运行在变路况线路条件下难以有效地对其进行优化控制。针对上述问题,提出一种高速列车纵向动力学模型与径向基函数神经网络(RBFNN)控制策略。考虑列车车钩力和复杂线路条件,分析整列车前后的不同受力情况,建立列车纵向动力学模型。针对该模型无外加干扰时设计一种理想反馈控制律,引入RBFNN对理想控制输出进行拟合,在考虑干扰项影响的情况下,通过设计参数估计自适应律代替神经网络权值的调整,并对其进行Lyapunov稳定性证明。采用京石武高铁北京西—郑州东段的CRH380B型高速列车真实线路运行数据进行仿真模拟,并在相同条件下与反演滑模(BSSM)控制器的仿真结果进行对比。仿真结果表明所提控制器更能有效应对复杂路况变化和外界干扰,对高速列车具有更好的控制效果,改善其运行的平稳性及高效性。 展开更多
关键词 高速列车 纵向动力学模型 径向基函数神经网络 自适应算法 LYAPUNOV理论
在线阅读 下载PDF
基于RBFNN的双星协同仅测角定轨方法 被引量:2
9
作者 龚柏春 刘一澎 +1 位作者 马艳红 任默 《中国惯性技术学报》 EI CSCD 北大核心 2024年第5期449-456,共8页
针对空间非合作目标空间态势感知任务中弱可观测无源定轨状态的快速捕获问题,提出了一种基于径向基函数神经网络(RBFNN)的双星协同稀疏无源测角定轨方法。首先,在限制性三体问题的假设下建立了考虑地球非球形J2项摄动的轨道动力学模型... 针对空间非合作目标空间态势感知任务中弱可观测无源定轨状态的快速捕获问题,提出了一种基于径向基函数神经网络(RBFNN)的双星协同稀疏无源测角定轨方法。首先,在限制性三体问题的假设下建立了考虑地球非球形J2项摄动的轨道动力学模型和赤经赤纬测量模型。然后,构建了基于RBFNN的双星协同仅测角定轨框架,设计了训练数据集生成器、数据预处理方法和RBFNN结构。最后,利用地球静止轨道任务进行了数值仿真验证,并对测角频率等参数的定轨敏感性进行分析。仿真结果表明,在240 s内仅进行三次角度观测的条件下,该模型对初始相对距离估计的平均绝对百分比误差约为0.36%,目标轨道速度的估计误差在米/秒量级,可实现高精度的超短弧段稀疏无源测量定轨。 展开更多
关键词 空间态势感知 初始定轨 仅测角 径向基函数神经网络 双星协同
在线阅读 下载PDF
基于RBFNN-ISSA的特大跨径悬索桥有限元模型修正 被引量:2
10
作者 王祺顺 何维 +2 位作者 吴欣 郭伟奇 雷顺成 《振动与冲击》 EI CSCD 北大核心 2024年第7期155-167,共13页
针对大跨径悬索桥一类复杂结构的有限元模型修正问题,提出了一种基于径向基神经网络(radial basis function neural network,RBFNN)子结构代理模型与改进麻雀搜索算法(improved sparrow search algorithm,ISSA)的有限元模型修正方法。首... 针对大跨径悬索桥一类复杂结构的有限元模型修正问题,提出了一种基于径向基神经网络(radial basis function neural network,RBFNN)子结构代理模型与改进麻雀搜索算法(improved sparrow search algorithm,ISSA)的有限元模型修正方法。首先,基于桥梁图纸数据采用通用有限元软件建立一座大跨悬索桥的初始有限元模型,并根据拉丁超立方抽样原则生成子结构材料参数-结构响应的训练样本,通过RBF神经网络和子结构模拟方法对初始有限元模型进行解构重组和样本学习,拟合关于材料参数-结构响应的代理模型。其次,建立考虑主梁挠度和模态频率误差最小的有限元模型参数修正数学优化模型,采用Tent混沌映射及黄金正弦策略改进标准麻雀搜索算法,引入柯西分布函数和贪心保留策略对每一代麻雀种群进行扰动,以用于求解联合静、动力特征的有限元模型修正数学优化问题。最后,以杭瑞高速洞庭湖大桥为工程背景,进行了悬索桥荷载试验,利用实测桥梁响应数据验证了该方法的可行性。研究结果表明:基于RBF神经网络与子结构法的模型修正方法,可以建立拟合精度较高的悬索桥结构代理模型;基于子结构RBF神经网络与改进麻雀搜索算法修正后的有限元模型相较于整体RBF神经网络、支持向量机和Kriging模型,大幅提升了对于实际结构的模拟精度,与实测数据相比,修正前后有限元模型在两级静力加载工况下13个有效测点挠度的平均相对误差降低了25%以上,前8阶模态频率的平均相对误差由-6.83%降至-2.38%,MAC值结果表明修正后模型能够准确地反映出大桥的实际振动状态,有效改善了初始有限元模型计算失真的情况;此外,基于混合策略改进后的麻雀搜索算法对于有限元模型修正参数的寻优具有更佳的收敛效率和稳定性。 展开更多
关键词 桥梁工程 有限元模型修正 改进麻雀搜索算法(ISSA) 悬索桥 径向基神经网络(rbfnN) 柯西变异策略
在线阅读 下载PDF
基于RBFNN的智能车辆转向系统的预设性能控制
11
作者 黄艳玲 李红娟 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2024年第1期85-92,共8页
针对存在模型非线性和参数不确定性的智能车辆转向系统的预设性能跟踪控制问题,采用径向基函数神经网络对转向系统中的不确定非线性进行在线逼近,结合障碍Lyapunov函数技术为智能车辆的线控转向系统设计预设性能控制器。在控制器设计中... 针对存在模型非线性和参数不确定性的智能车辆转向系统的预设性能跟踪控制问题,采用径向基函数神经网络对转向系统中的不确定非线性进行在线逼近,结合障碍Lyapunov函数技术为智能车辆的线控转向系统设计预设性能控制器。在控制器设计中,采用动态增益技术补偿控制增益未知对系统控制性能的影响。利用Lyapunov方法分析系统的稳定性,证明在控制器作用下,前轮转角的跟踪误差在预设的时间内收敛至原点预设的邻域;通过数值仿真和整车实验验证了控制方法的合理性。 展开更多
关键词 转向系统 不确定非线性 未知控制增益 径向基函数神经网络 预设性能控制
在线阅读 下载PDF
差分GWO优化RBFNN模型及粮食产量预测应用 被引量:1
12
作者 张小庆 许荣杰 +1 位作者 冯晓祥 叶亮 《计算机工程与设计》 北大核心 2024年第12期3802-3811,共10页
针对粮食产量预测方法预测精度的不足,提出一种融入差分进化自适应灰狼算法优化正则项径向基神经网络的粮食产量预测模型DEGWO-RBFNN。为提高灰狼算法的搜索精度,引入指数分布随机数初始化种群,提升初始种群质量;设计Sigmoid函数自适应... 针对粮食产量预测方法预测精度的不足,提出一种融入差分进化自适应灰狼算法优化正则项径向基神经网络的粮食产量预测模型DEGWO-RBFNN。为提高灰狼算法的搜索精度,引入指数分布随机数初始化种群,提升初始种群质量;设计Sigmoid函数自适应缩放因子均衡算法搜索与开发;引入差分进化提高全局搜索能力。利用改进GWO搜索RBFNN超参数,解决网格调参易陷入局部最优及初值敏感的不足。实验结果表明,与GWO-RBFNN、RBFNN、DE-RBFNN、BPNN、GA-BPNN、支持向量机、随机森林相比,DEGWO-RBFNN预测精度达到96.06%,比对比模型可提高2.47%~14.79%。 展开更多
关键词 径向基神经网络 粮食产量预测 灰狼优化算法 差分进化 指数分布 自适应缩放因子 正则项
在线阅读 下载PDF
基于层级分解的前围声学包多目标优化 被引量:1
13
作者 杨帅 吴宪 薛顺达 《振动与冲击》 北大核心 2025年第3期267-277,共11页
搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变... 搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变量范围,以PBNR(power based noise reduction)均值作为约束,以质量和成本作为优化目标,采用非支配排序遗传算法(nondominated sorting genetic algorithm II,NSGA-II)进行多目标优化,得到Pareto多目标解集。并从中选取满足设计目标的最佳组合方案(材料组合、覆盖率、前围过孔密封方案选型)。结果显示,该模型最终的优化结果与实测结果接近,误差分别为0.35%,1.47%,1.82%,相较于初始声学包方案,优化后的结果显示,PBNR均值提升3.05%,其质量降低52.38%,成本降低15.15%,验证了所提方法的有效性和准确性。 展开更多
关键词 GAPSO-rbfnN 声学包 PBNR NSGA-II Pareto多目标解集
在线阅读 下载PDF
船用起重机自适应神经网络滑模防摆控制
14
作者 陈志梅 王艳芳 +2 位作者 朱东科 邵雪卷 张井岗 《上海海事大学学报》 北大核心 2025年第2期137-143,共7页
针对欠驱动船用臂架起重机存在持续不确定上界干扰问题,提出一种自适应径向基函数神经网络(adaptive radial basis function neural network,ARBFNN)分层滑模控制(hierarchical sliding mode control,HSMC)方法(称为ARBFNN-HSMC方法)。... 针对欠驱动船用臂架起重机存在持续不确定上界干扰问题,提出一种自适应径向基函数神经网络(adaptive radial basis function neural network,ARBFNN)分层滑模控制(hierarchical sliding mode control,HSMC)方法(称为ARBFNN-HSMC方法)。采用拉格朗日方法建立受海浪持续影响的船舶-起重机-负载复杂系统的动力学模型,并将其转换为欠驱动系统的标准形式;采用HSMC方法设计控制律,以补偿系统参数的摄动;通过ARBFNN逼近并补偿由外部非线性干扰引起的不确定上界扰动,并利用李雅普诺夫函数证明了系统的渐近稳定性。仿真结果表明,该方法在持续未知干扰下具有很强的鲁棒性,能够有效实现负载定位和消除摆动的双重目标。 展开更多
关键词 船用起重机 防摆控制 欠驱动系统 分层滑模控制(HSMC) 自适应径向基函数神经网络(ArbfnN)
在线阅读 下载PDF
液压伺服系统非对称时变输出约束事件触发控制
15
作者 宫赤坤 汝青杨 袁立鹏 《控制理论与应用》 北大核心 2025年第5期979-988,共10页
针对液压伺服系统具有未知非线性、未建模动态以及通信网络带宽受限等问题,本文提出一种具有非对称时变约束指令滤波自适应事件触发鲁棒控制方法.与常规液压伺服系统输出位移静态受限相比较,此控制方法在液压伺服系统具有未建模动态的... 针对液压伺服系统具有未知非线性、未建模动态以及通信网络带宽受限等问题,本文提出一种具有非对称时变约束指令滤波自适应事件触发鲁棒控制方法.与常规液压伺服系统输出位移静态受限相比较,此控制方法在液压伺服系统具有未建模动态的情况下,可以保证液压伺服系统输出位移在预设的非对称时变约束范围内.针对液压伺服控制系统中的未知函数利用径向基函数神经网络自适应方法进行逼近补偿.引入事件触发机制使得控制输入不再持续更新,从而充分利用有限的通信资源.构造新型滤波误差补偿机制不仅可以在有限时间内收敛,同时克服了抖振问题.通过李雅普诺夫方法证明了闭环系统的全局有界性.仿真实例表明了控制方法的有效性. 展开更多
关键词 未建模动态 非对称时变约束 鲁棒控制 径向基函数网络 事件触发控制 有限时间收敛
在线阅读 下载PDF
港口重载AGV转向稳定性容错控制策略
16
作者 刘璇 刘玉卿 +2 位作者 王子航 张明路 张建华 《计算机集成制造系统》 北大核心 2025年第1期47-55,共9页
针对四轮独立驱动与转向(4WID-4WIS)型港口重载自动导引车(AGV)常见的驱动电机失效情况,提出了三层控制结构的容错控制策略来进行转向稳定性容错控制。上层控制模块设计为模型预测控制器(MPC)与PI车速跟随控制器,实现港口AGV的路径跟踪... 针对四轮独立驱动与转向(4WID-4WIS)型港口重载自动导引车(AGV)常见的驱动电机失效情况,提出了三层控制结构的容错控制策略来进行转向稳定性容错控制。上层控制模块设计为模型预测控制器(MPC)与PI车速跟随控制器,实现港口AGV的路径跟踪;中层控制模块设计为横摆角速度、质心侧偏角RBF神经网络鲁棒滑模控制器,用来计算出最佳附加横摆力矩;下层控制模块设计为失效分配策略,对力矩进行重新分配。最后,搭建了CarMaker测试平台,通过实验验证了容错控制策略的有效性与优越性。 展开更多
关键词 港口重载AGV 模型预测控制器 PI车速跟随控制器 RBF神经网络 滑模控制 失效分配
在线阅读 下载PDF
柔性空间机器人预定义时间自适应滑模控制
17
作者 刘宜成 杨迦凌 +1 位作者 唐瑞 程靖 《浙江大学学报(工学版)》 北大核心 2025年第2期351-361,共11页
针对具有典型非线性特性的多段线驱动柔性空间机器人的轨迹跟踪控制问题,提出基于预定义时间的自适应滑模控制方法.基于常曲率方法和拉格朗日法,建立多段线驱动柔性空间机器人的动力学模型.设计基于预定义时间理论的滑模控制器,利用径... 针对具有典型非线性特性的多段线驱动柔性空间机器人的轨迹跟踪控制问题,提出基于预定义时间的自适应滑模控制方法.基于常曲率方法和拉格朗日法,建立多段线驱动柔性空间机器人的动力学模型.设计基于预定义时间理论的滑模控制器,利用径向基函数(RBF)神经网络补偿多段线驱动柔性空间机器人系统的建模误差和外界干扰.利用Lyapunov理论,证明轨迹跟踪误差可以在预定义时间内收敛.通过数值仿真验证了模型和控制器的有效性,与固定时间控制器和无补偿的控制器相比,所提出的控制器使系统轨迹误差具有更快的收敛速度. 展开更多
关键词 柔性空间机器人 预定义时间稳定性 径向基函数神经网络 轨迹跟踪 滑模控制
在线阅读 下载PDF
基于人工智能的船智能航行控制系统设计
18
作者 郑金明 罗冠 《舰船科学技术》 北大核心 2025年第11期185-189,共5页
船舶航行环境存在风速与水流等复杂干扰,导致其失稳且偏离预设航迹,为此,设计基于人工智能的船智能航行控制系统。通过智能感知模块采集船舶航行速度、航向、环境等数据,由数据处理分析模块依据数据创建船舶运动模型及坐标系,通过智能... 船舶航行环境存在风速与水流等复杂干扰,导致其失稳且偏离预设航迹,为此,设计基于人工智能的船智能航行控制系统。通过智能感知模块采集船舶航行速度、航向、环境等数据,由数据处理分析模块依据数据创建船舶运动模型及坐标系,通过智能控制模块的径向基神经网络设计智能控制器,对船舶航行中存在扰动因素下航向与航速的智能控制,船舶根据期望航行轨迹航行。实验结果显示,该系统可实现船舶稳定与扰动非稳态航行下的精准高效航向与航速控制,控制后的航行轨迹能够快速与预设轨迹相吻合,并保持持续稳定的航行轨迹跟踪,控制效果可靠。 展开更多
关键词 人工智能 船智能航行 径向基神经网络 船舶运动模型 航行轨迹
在线阅读 下载PDF
基于RBF反步滑模的多柔性梁耦合系统振动控制
19
作者 邱志成 杨阳 《振动.测试与诊断》 北大核心 2025年第1期110-115,203,共7页
针对多柔性梁耦合系统的振动特性以及主动控制问题,设计并建立了实验平台。为了得到准确的模型,提出了一种基于小波变换和灰狼寻优算法的实验辨识方法,对有限元模型进行修正。为实现振动快速抑制,设计了基于最小参数学习法的径向基网络... 针对多柔性梁耦合系统的振动特性以及主动控制问题,设计并建立了实验平台。为了得到准确的模型,提出了一种基于小波变换和灰狼寻优算法的实验辨识方法,对有限元模型进行修正。为实现振动快速抑制,设计了基于最小参数学习法的径向基网络反步滑模控制(radial basis function network backstepping slide mode control,简称RBF-BSSMC)算法。实验结果表明,相比于比例微分(proportional-derivative,简称PD)控制,RBF-BSSMC算法可以实现快速振动抑制,特别是小幅值振动。 展开更多
关键词 多柔性梁耦合系统 主动振动控制 径向基网络 反步滑模控制
在线阅读 下载PDF
孤岛模式下基于VSG的光储发电系统多机并联运行策略
20
作者 张萍 李扬 《全球能源互联网》 北大核心 2025年第1期98-109,共12页
随着光伏发电装机容量的大幅增加,电力系统呈现“低惯性、低阻尼”特性,虚拟同步发电机(virtual synchronous generators,VSG)技术可以提高系统稳定性和供电可靠性。针对孤岛模式下光储-VSG并联系统由于线路阻抗差异和负载投切等原因导... 随着光伏发电装机容量的大幅增加,电力系统呈现“低惯性、低阻尼”特性,虚拟同步发电机(virtual synchronous generators,VSG)技术可以提高系统稳定性和供电可靠性。针对孤岛模式下光储-VSG并联系统由于线路阻抗差异和负载投切等原因导致的系统环流及功率分配不均问题,提出一种协同自适应控制策略。首先,通过系统无功功率偏差动态调整虚拟阻抗值,实现无功功率的精确分配,从而抑制系统稳态环流。其次,为提升系统动态特性和抑制负载投切过程中系统的振荡,建立双输入三输出径向基函数(radial basis function,RBF)神经网络对系统关键参数进行优化。最后,建立3台光储-VSG并联模型,设定不同容量比进行仿真分析,验证了所提控制策略能更好地抑制系统环流,保证系统稳定运行。 展开更多
关键词 光储发电系统 虚拟同步发电机 动态虚拟阻抗 RBF神经网络 环流抑制
在线阅读 下载PDF
上一页 1 2 72 下一页 到第
使用帮助 返回顶部