数据清洗、特征选择和预测模型建立是基于数据采集与监视控制系统(supervisory control and data acquisition,SCADA)数据,实现风电机组异常状态预警不可缺少的重要环节。先结合孤立森林(isolation forest,iForest)和基于密度的空间聚类...数据清洗、特征选择和预测模型建立是基于数据采集与监视控制系统(supervisory control and data acquisition,SCADA)数据,实现风电机组异常状态预警不可缺少的重要环节。先结合孤立森林(isolation forest,iForest)和基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法对SCADA数据异常点进行有效清洗,并采用随机森林算法(random forests,RF)与Person相关系数法优选模型输入参数;再进而基于Optuna优化的类别提升树(categorical boosting,CATBoost)算法,建立风电机组正常工况齿轮箱油池温度的预测模型;然后采用滑动窗方法,构建状态评价指标,并使用区间估计理论确定油温异常状态判别的临界阈值;实现油温异常预警;最后,采用某风电机组SCADA系统油温异常的真实历史故障数据进行检验,验证了该方法的有效性。展开更多
文摘数据清洗、特征选择和预测模型建立是基于数据采集与监视控制系统(supervisory control and data acquisition,SCADA)数据,实现风电机组异常状态预警不可缺少的重要环节。先结合孤立森林(isolation forest,iForest)和基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法对SCADA数据异常点进行有效清洗,并采用随机森林算法(random forests,RF)与Person相关系数法优选模型输入参数;再进而基于Optuna优化的类别提升树(categorical boosting,CATBoost)算法,建立风电机组正常工况齿轮箱油池温度的预测模型;然后采用滑动窗方法,构建状态评价指标,并使用区间估计理论确定油温异常状态判别的临界阈值;实现油温异常预警;最后,采用某风电机组SCADA系统油温异常的真实历史故障数据进行检验,验证了该方法的有效性。