With the growing awareness of environmental protection and the increasing demand for rare earth elements(REEs),it has become necessary to efficiently remove and recover REEs from mine wastewater.In this study,jarosite...With the growing awareness of environmental protection and the increasing demand for rare earth elements(REEs),it has become necessary to efficiently remove and recover REEs from mine wastewater.In this study,jarosite(Jar)and schwertmannite(Sch)were biosynthesized using Acidithiobacillus ferrooxidans for the adsorption of REEs.Additionally,the adsorption capacities of Jar and Sch for La^(3+),Ce^(3+),Pr^(3+),Nd^(3+),Sm^(3+),Gd^(3+),Dy^(3+),and Y^(3+)in mine wastewater were improved by mechanical activation.XRD,FTIR,BET,and SEM-EDS analyses revealed that mechanical activation did not alter the phase of the material,but increased the amount of surface-OH and SO42−groups,as well as the specific surface area.This significantly enhanced the adsorption performance of Jar and Sch for REEs.The optimum adsorption time and pH were determined through batch adsorption experiments.Besides,the adsorption kinetics were studied and found to align well with the pseudo-second-order model.Furthermore,the thermodynamic parameters(ΔG^(Θ),ΔH^(Θ)andΔS^(Θ))and adsorption isotherms were analyzed.The results indicated that mechanically activated schwertmannite(M-Sch)exhibited superior adsorption performance for REEs compared to mechanically activated jarosite(M-Jar).Moreover,M-Sch was reusable and exhibited high adsorption efficiency of REEs in actual mine wastewater,exceeding 92%.展开更多
Because of an unfortunate mistake by authors,the Project(5227010679)of Foundation item was wrong.The corrected Project is shown as follows:Project(52271073).
The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on acti...The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on active anodic oxide film and the structure and properties of the composite coating were studied by several surface and electrochemical techniques.The results showed that Ag nanograins with an average size of 10 nm were embedded into the anodic oxide film with pores of 0.1−2μm.Ag nanoparticles provided a catalytic site for the deposition of Ni-B alloy,and the Ni crystal nucleus was first grown in horizontal mode and then in cylindrical mode.The corrosion potential of the composite coating increased by 1.37 V and the corrosion current reduced two orders of magnitude due to the subsequent deposition of Ni-P alloy.The high corrosion resistance was attributed to the misaligning of these micro defects in the three different layers and the amorphous structure of the Ni-P alloy in the outer layer.These findings provide a new idea for electroless nickel plating on anodic oxide film.展开更多
This study was to explore the functional mechanism of rare earth regulating soybean leaves and the characteristics and functions of differentially expressed proteins under the regulation of rare earth. In this study, ...This study was to explore the functional mechanism of rare earth regulating soybean leaves and the characteristics and functions of differentially expressed proteins under the regulation of rare earth. In this study, Dongnong 42 was used as material, and 30 mg·L^(-1) CeCl_(3) solution was sprayed on soybean leaves at the seedling stage. Tandem mass tag(TMT) quantitative proteomics technique and bioinformatics analysis were used to identify soybean leaf proteins. A total of 8 510 proteins were identified, and 127 differentially expressed proteins(DEPs) in response to rare earth cerium regulation were identified, among which 64 were upregulated and 63 were down-regulated. The gene ontology(GO) annotation indicated that DEPs were mainly involved in metabolic process, cellular process, response to stimulus, biological regulation, and response to a stimulus;DEPs in cell module categories were mainly involved in cells, cell part, organelle, membrane, membrane part, organelle par, and protein-containing complex;DEPs in molecular functional categories were mainly involved in catalytic activity, binding and antioxidant activity. Kyoto encyclopedia of genes and genomes(KEGG) pathway significantly enriched starch and sucrose metabolism, glycolysis/gluconeogenesis, galactose metabolism, pentose phosphate pathway, and MAPK signaling pathway-plant. These DEPs were mainly involved in photosynthesis, glucose metabolism and stress response. Forty-six differential protein interaction networks were identified by protein interaction network analysis. This experiment provided a reference for studies of the mechanism of rare earth cerium regulating soybean leaf function from the proteomic perspective.展开更多
Narrow backfill earth pressure estimation is applied to study the stability of supporting structures in the vicinity of existing buildings.Previous narrow backfill earth pressure studies have neglected seismic-unsatur...Narrow backfill earth pressure estimation is applied to study the stability of supporting structures in the vicinity of existing buildings.Previous narrow backfill earth pressure studies have neglected seismic-unsaturated seepage multi-field coupling,resulting in inaccurate estimates.To address these deficiencies,this paper proposed a calculation method for seismic passive earth pressure in unsaturated narrow backfill,based on inclined thin-layer units.It considers the interlayer shear stress,arching effect,and the multi-field coupling of seismic-unsaturated seepage.Additionally,this paper includes a parametric sensitivity analysis.The outcomes indicate that the earthquake passive ground pressure of unsaturated narrow backfill can be reduced by increasing the aspect ratio,seismic acceleration coefficient,and unsaturation parameterα.It can also be reduced by decreasing the effective interior friction angle,soil cohesion,wallearth friction angle,and vertical discharge.Furthermore,for any width soil,lowering the elevation of the action point of passive thrust can be attained by raising the effective interior friction angle,wall-earth friction angle,and unsaturation parameterα.Reducing soil cohesion,seismic acceleration coefficient,and vertical discharge can also lower the height of the application point of passive thrust.展开更多
Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structu...Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structures.These explosives exhibit significant advantages over traditional compounds,including higher density,greater heats of detonation,improved mechanical hardness,and excellent thermal stability.To effectively evaluate their detonation performance,it is crucial to have a reliable method for predicting detonation heat,velocity,and pressure.This study leverages experimental data and outputs from the leading commercial computer code to identify suitable decomposition pathways for different metal oxides,facilitating straightforward calculations for the detonation performance of alkali metal salts,and metal coordination compounds,along with EMOFs.The new model enhances predictive reliability for detonation velocities,aligning more closely with experimental results,as evi-denced by a root mean square error(RMSE)of 0.68 km/s compared to 1.12 km/s for existing methods.Furthermore,it accommodates a broader range of compounds,including those containing Sr,Cd,and Ag,and provides predictions for EMOFs that are more consistent with computer code outputs than previous predictive models.展开更多
A feasible approach to selectively recover iron and rare earth elements(REEs)from red mud through acid leaching-coordination-solvent extraction was proposed.The leaching efficiencies of Fe,Al,Ti,Sc,La,Ce,Nd and Y can ...A feasible approach to selectively recover iron and rare earth elements(REEs)from red mud through acid leaching-coordination-solvent extraction was proposed.The leaching efficiencies of Fe,Al,Ti,Sc,La,Ce,Nd and Y can reach up to 95.9%,82.1%,68.3%,93.3%,82.3%,96.9%,98.3%and 95.6%,respectively,under the optimal condition in the leaching process.Aliquat 336 showed excellent extraction performance of iron in chloride-rich solution,and the maximum extraction efficiency can reach over 96%in one time extraction while the loss of other metals was less than 10%,under the condition of Aliquat 336 concentration(v/v)of 30%,aqueous-organic ratio of 1.0 and extraction time of 20 min.Furthermore,P204 can effectively extract the scandium while Al and most other REEs remain in the aqueous phase.This approach may provide a new insight for the recovery of valuable resources from red mud.展开更多
Effects of sintering temperature in hot pressing, t yp es, states and amounts of rare earth as well as TiH 2 on the transverse rupture strength (TRS) of Fe-based composites are studied by means of orthogonal test and ...Effects of sintering temperature in hot pressing, t yp es, states and amounts of rare earth as well as TiH 2 on the transverse rupture strength (TRS) of Fe-based composites are studied by means of orthogonal test and variance analysis in this paper. It is found that sintering temperature has a significant effect on the TRS of Fe-based diamond composites. The optimal sin tering temperature is 780~860 ℃. On the contrary, the effects of RE additi v es on values of TRS of the diamond composites have on distinct difference no mat ter the RE is in the state of mixture or compound or oxidization. Experimental r esults demonstrate that Fe-based diamond composites with RE additives exhibit h igher TRS, which results in an increase in diamond retention capacity. The degre e of increment of TRS is different at different sintering temperatures. The opti mal amount of rare earth was found to be about 1% in weight. The effect of RE is more significant at lower sintering temperature. The experimental results also reveal that TiH 2 additive has a negative effect on the TRS of Fe-based compos ites. Microscope observations demonstrate that specimen without TiH 2 additives , shows fewer pores and denser structures in the base metal. It can also be seen from the SEM observation of the resulting fracturing surface of bending test sp ecimens that the bonding of the diamond-matrix interface is better in the speci men without TiH 2 than in the specimen with TiH 2. Also the fracture surface o f the specimen without TiH 2 reveals ductile cup and cone behavior.展开更多
A method, doping WC with La(NO 3) 3, of producing cemented carbide with rare earth was introduced. The effects of lanthanum on the mechanical properties and microstructure of WC 9(Co 75%Ni) cemented carbide were studi...A method, doping WC with La(NO 3) 3, of producing cemented carbide with rare earth was introduced. The effects of lanthanum on the mechanical properties and microstructure of WC 9(Co 75%Ni) cemented carbide were studied and a rock drilling experiment was carried out.The experimental results show that both transverse rupture strength (TRS) and hardness of WC 9(Co 75%Ni) rare earth cemented carbides can match that of WC 9Co cemented carbide, when La 2O 3 / (Co+Ni) ratio is 0.3%, the abnormal growth of WC grain in the cemented carbide can be restrained effectively, the homogeneity of grain size in microstructure and the wear resistance are improved, which can be matchable to that of WC 9Co cemented carbide for mining.展开更多
An excellent extraction selectivity towards Sc over other REEs in 4 mol/L HCl solution was achieved with the separation factor βSc/REEs over 8000 by 2-ethylhexyl phosphoric acid mono 2-ethylhexyl ester(HEHEHP)and the...An excellent extraction selectivity towards Sc over other REEs in 4 mol/L HCl solution was achieved with the separation factor βSc/REEs over 8000 by 2-ethylhexyl phosphoric acid mono 2-ethylhexyl ester(HEHEHP)and the extraction equilibrium can be obtained within 20 min.The extracted Sc can be stripped using 5 mol/L NaOH solution as eluent at 363 K with the stripping rate of 92.1%obtained.The extraction mechanism was clearly elucidated by slope analysis,saturation extraction,IR,and NMR analysis.It was revealed that the extraction of Sc in 4 mol/L HCl solution is still dominated by cation exchange process between P-O-H and Sc,and coordination process between P=O and Sc,with 6 molecules of extractant as dimer participating in the process.Finally,a flowsheet for the recovery of Sc from ion-adsorption rare earth elements(REEs)concentrate was proposed and proved in lab-scale experiment.展开更多
Rare earth element (REE) concentrations were measured by ICP-MS for groundwater collected from deep seated Taiyuan Fm limestone aquifer (from -400 to -530 m) in Renlou Coal Mine, northern Anhui Province, China. It...Rare earth element (REE) concentrations were measured by ICP-MS for groundwater collected from deep seated Taiyuan Fm limestone aquifer (from -400 to -530 m) in Renlou Coal Mine, northern Anhui Province, China. It can be concluded that the groundwater is warm (34.0-37.2 ℃) C1-Ca, Na type water with circum-neutral pH (7.35-8.28) and high total dissolved solids (TDS, 1 746-2 849 mg/L). The groundwater exhibits heavy REEs enrichment relative to light REEs compared with Post Archean Average Shale (PAAS), as well as their aquifer rocks (limestone). The enrichment of REEs is considered to be controlled by terrigeneous materials (e.g. zircon) in aquifer rocks, whereas the fractionation of REEs is controlled by marine derived materials (e.g. calcite), to a less extent, terrigeneous materials and inorganic complexation. The Ce anomalies normalized to PAAS and aquifer rocks are weak, which probably reflects the signature of the aquifer rock rather than redox conditions or pH. The similarities of REE patterns between groundwater and aquifer rocks imply that aquifer rocks play important roles in controlling the REE characteristics of groundwater, and then provide a probability for discrimination of groundwater sources by using REEs.展开更多
Phosphogypsum(PG), the main by-product of phosphoric acid production industries, is considered one of the most important secondary sources of rare earth elements(REEs). The current study focuses on the recovery of REE...Phosphogypsum(PG), the main by-product of phosphoric acid production industries, is considered one of the most important secondary sources of rare earth elements(REEs). The current study focuses on the recovery of REEs content and the residual phosphate content existing in the PG with preserving on the CaSO_(4)skeleton to be used in other various applications. These attainments are carried out using citric acid leaching process via soaking technique. Several dissolution parameters for REEs using citric acid were studied, including soaking time, soaking temperature, citric acid concentration, solid-to-liquid ratio, and recycling of the citrate leaching solutions in the further REEs dissolution experiments. The best-operating conditions were 14 d of soaking time, 7.5% citric acid concentration, and the solid-toliquid ratio of 1/5 at ambient temperature. About 79.57% dissolution efficiency of REEs was achieved using the optimal conditions. Applying four soaking stages by mixing different fresh PG samples with the same citrate solution sequentially, cumulative dissolution efficiency for REEs was found to be 64.7% under optimal soaking conditions. REEs were recovered using Dowex 50X8 resin from citrate solutions with 96% extraction efficiency. Dissolution kinetics proved the pseudo-first-order nature, reversible reactions, and two activation energies for all REEs.展开更多
The effects of rare earth ytterbium(Yb)addition and hot extrusion on the microstructure and corrosion behavior of as-cast ADC12 were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersiv...The effects of rare earth ytterbium(Yb)addition and hot extrusion on the microstructure and corrosion behavior of as-cast ADC12 were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS)and X-ray diffraction(XRD).The experimental results demonstrate that both the Si phase andβ-Al_(5)FeSi phase in the alloy with 0.9 wt%Yb have been remarkably refined,and the Al3Yb intermetallic compound has also been obtained.The Si,β-Al5FeSi,and rare earth phases are further refined in the alloy at 0.9 wt%Yb and hot extrusion.The results of the immersion corrosion tests and electrochemical experiments show that the corrosion current density(8.56μA/cm^(2))of the alloy with 0.9 wt%Yb addition and hot extrusion is 50.6%lower than the untreated alloy(17.33μA/cm^(2)),and the polarization resistance(9252Ω·cm^(2))was 71.3%higher than the untreated alloy(2654Ω·cm^(2)).The corrosion in the cathode phase in the micro-battery was refined to varying degrees attributable to the addition of Yb and hot extrusion,where the cathode reaction in the corrosion process caused a decrease of the corrosion rate.展开更多
Phosphogypsum(PG)is a potential resource for rare earth elements(REEs).Several studies have been carried out on REE leaching from PG.However,few in-depth studies have investigated the kinetics of this leaching process...Phosphogypsum(PG)is a potential resource for rare earth elements(REEs).Several studies have been carried out on REE leaching from PG.However,few in-depth studies have investigated the kinetics of this leaching process.In this study,the leaching kinetics of REEs from PG in nitric acid at different temperatures were explored in depth.The experiments show that the maximum leaching recovery for ΣREE was 58.5%,75.9%and 83.4%at 30,60 and 80℃,respectively.Additionally,among La,Ce,Y and Nd,Y had the highest leaching rate.A new shrinking core model(SCM)based on the dissolution reaction of a cylindrical solid particle with interfacial transfer and diffusion across the product layer as the rate-controlling step was deduced and could well fit the leaching process of REEs from PG.The activation energies for the leaching of La,Ce,Y and Nd were determined on the basis of the new cylindrical SCM.In summary,the cylindrical SCM was a more suitable fitting model than the spherical SCM,and the interfacial transfer and diffusion across the product layer were the rate-controlling step for REE leaching from the PG sample.展开更多
基金Project(2022YFC2105300) supported by the National Key Research and Development Program of ChinaProject(52274288) supported by the National Natural Science Foundation of China。
文摘With the growing awareness of environmental protection and the increasing demand for rare earth elements(REEs),it has become necessary to efficiently remove and recover REEs from mine wastewater.In this study,jarosite(Jar)and schwertmannite(Sch)were biosynthesized using Acidithiobacillus ferrooxidans for the adsorption of REEs.Additionally,the adsorption capacities of Jar and Sch for La^(3+),Ce^(3+),Pr^(3+),Nd^(3+),Sm^(3+),Gd^(3+),Dy^(3+),and Y^(3+)in mine wastewater were improved by mechanical activation.XRD,FTIR,BET,and SEM-EDS analyses revealed that mechanical activation did not alter the phase of the material,but increased the amount of surface-OH and SO42−groups,as well as the specific surface area.This significantly enhanced the adsorption performance of Jar and Sch for REEs.The optimum adsorption time and pH were determined through batch adsorption experiments.Besides,the adsorption kinetics were studied and found to align well with the pseudo-second-order model.Furthermore,the thermodynamic parameters(ΔG^(Θ),ΔH^(Θ)andΔS^(Θ))and adsorption isotherms were analyzed.The results indicated that mechanically activated schwertmannite(M-Sch)exhibited superior adsorption performance for REEs compared to mechanically activated jarosite(M-Jar).Moreover,M-Sch was reusable and exhibited high adsorption efficiency of REEs in actual mine wastewater,exceeding 92%.
文摘Because of an unfortunate mistake by authors,the Project(5227010679)of Foundation item was wrong.The corrected Project is shown as follows:Project(52271073).
基金Project(5227010679)supported by the National Natural Science Foundation of China。
文摘The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on active anodic oxide film and the structure and properties of the composite coating were studied by several surface and electrochemical techniques.The results showed that Ag nanograins with an average size of 10 nm were embedded into the anodic oxide film with pores of 0.1−2μm.Ag nanoparticles provided a catalytic site for the deposition of Ni-B alloy,and the Ni crystal nucleus was first grown in horizontal mode and then in cylindrical mode.The corrosion potential of the composite coating increased by 1.37 V and the corrosion current reduced two orders of magnitude due to the subsequent deposition of Ni-P alloy.The high corrosion resistance was attributed to the misaligning of these micro defects in the three different layers and the amorphous structure of the Ni-P alloy in the outer layer.These findings provide a new idea for electroless nickel plating on anodic oxide film.
基金Supported by the National Natural Science Foundation of China(31471440)。
文摘This study was to explore the functional mechanism of rare earth regulating soybean leaves and the characteristics and functions of differentially expressed proteins under the regulation of rare earth. In this study, Dongnong 42 was used as material, and 30 mg·L^(-1) CeCl_(3) solution was sprayed on soybean leaves at the seedling stage. Tandem mass tag(TMT) quantitative proteomics technique and bioinformatics analysis were used to identify soybean leaf proteins. A total of 8 510 proteins were identified, and 127 differentially expressed proteins(DEPs) in response to rare earth cerium regulation were identified, among which 64 were upregulated and 63 were down-regulated. The gene ontology(GO) annotation indicated that DEPs were mainly involved in metabolic process, cellular process, response to stimulus, biological regulation, and response to a stimulus;DEPs in cell module categories were mainly involved in cells, cell part, organelle, membrane, membrane part, organelle par, and protein-containing complex;DEPs in molecular functional categories were mainly involved in catalytic activity, binding and antioxidant activity. Kyoto encyclopedia of genes and genomes(KEGG) pathway significantly enriched starch and sucrose metabolism, glycolysis/gluconeogenesis, galactose metabolism, pentose phosphate pathway, and MAPK signaling pathway-plant. These DEPs were mainly involved in photosynthesis, glucose metabolism and stress response. Forty-six differential protein interaction networks were identified by protein interaction network analysis. This experiment provided a reference for studies of the mechanism of rare earth cerium regulating soybean leaf function from the proteomic perspective.
基金Project(42277175)supported by the National Natural Science Foundation of ChinaProject(NRMSSHR-2022-Z08)supported by the Key Laboratory of Natural Resources Monitoring and Supervision in Southern Hilly Region,Ministry of Natural Resources,China。
文摘Narrow backfill earth pressure estimation is applied to study the stability of supporting structures in the vicinity of existing buildings.Previous narrow backfill earth pressure studies have neglected seismic-unsaturated seepage multi-field coupling,resulting in inaccurate estimates.To address these deficiencies,this paper proposed a calculation method for seismic passive earth pressure in unsaturated narrow backfill,based on inclined thin-layer units.It considers the interlayer shear stress,arching effect,and the multi-field coupling of seismic-unsaturated seepage.Additionally,this paper includes a parametric sensitivity analysis.The outcomes indicate that the earthquake passive ground pressure of unsaturated narrow backfill can be reduced by increasing the aspect ratio,seismic acceleration coefficient,and unsaturation parameterα.It can also be reduced by decreasing the effective interior friction angle,soil cohesion,wallearth friction angle,and vertical discharge.Furthermore,for any width soil,lowering the elevation of the action point of passive thrust can be attained by raising the effective interior friction angle,wall-earth friction angle,and unsaturation parameterα.Reducing soil cohesion,seismic acceleration coefficient,and vertical discharge can also lower the height of the application point of passive thrust.
基金the research committee at Malek Ashtar University of Technology (MUT) for their invaluable support of this project
文摘Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structures.These explosives exhibit significant advantages over traditional compounds,including higher density,greater heats of detonation,improved mechanical hardness,and excellent thermal stability.To effectively evaluate their detonation performance,it is crucial to have a reliable method for predicting detonation heat,velocity,and pressure.This study leverages experimental data and outputs from the leading commercial computer code to identify suitable decomposition pathways for different metal oxides,facilitating straightforward calculations for the detonation performance of alkali metal salts,and metal coordination compounds,along with EMOFs.The new model enhances predictive reliability for detonation velocities,aligning more closely with experimental results,as evi-denced by a root mean square error(RMSE)of 0.68 km/s compared to 1.12 km/s for existing methods.Furthermore,it accommodates a broader range of compounds,including those containing Sr,Cd,and Ag,and provides predictions for EMOFs that are more consistent with computer code outputs than previous predictive models.
基金Project(21707167)supported by the Natural Science Foundation of China
文摘A feasible approach to selectively recover iron and rare earth elements(REEs)from red mud through acid leaching-coordination-solvent extraction was proposed.The leaching efficiencies of Fe,Al,Ti,Sc,La,Ce,Nd and Y can reach up to 95.9%,82.1%,68.3%,93.3%,82.3%,96.9%,98.3%and 95.6%,respectively,under the optimal condition in the leaching process.Aliquat 336 showed excellent extraction performance of iron in chloride-rich solution,and the maximum extraction efficiency can reach over 96%in one time extraction while the loss of other metals was less than 10%,under the condition of Aliquat 336 concentration(v/v)of 30%,aqueous-organic ratio of 1.0 and extraction time of 20 min.Furthermore,P204 can effectively extract the scandium while Al and most other REEs remain in the aqueous phase.This approach may provide a new insight for the recovery of valuable resources from red mud.
文摘Effects of sintering temperature in hot pressing, t yp es, states and amounts of rare earth as well as TiH 2 on the transverse rupture strength (TRS) of Fe-based composites are studied by means of orthogonal test and variance analysis in this paper. It is found that sintering temperature has a significant effect on the TRS of Fe-based diamond composites. The optimal sin tering temperature is 780~860 ℃. On the contrary, the effects of RE additi v es on values of TRS of the diamond composites have on distinct difference no mat ter the RE is in the state of mixture or compound or oxidization. Experimental r esults demonstrate that Fe-based diamond composites with RE additives exhibit h igher TRS, which results in an increase in diamond retention capacity. The degre e of increment of TRS is different at different sintering temperatures. The opti mal amount of rare earth was found to be about 1% in weight. The effect of RE is more significant at lower sintering temperature. The experimental results also reveal that TiH 2 additive has a negative effect on the TRS of Fe-based compos ites. Microscope observations demonstrate that specimen without TiH 2 additives , shows fewer pores and denser structures in the base metal. It can also be seen from the SEM observation of the resulting fracturing surface of bending test sp ecimens that the bonding of the diamond-matrix interface is better in the speci men without TiH 2 than in the specimen with TiH 2. Also the fracture surface o f the specimen without TiH 2 reveals ductile cup and cone behavior.
文摘A method, doping WC with La(NO 3) 3, of producing cemented carbide with rare earth was introduced. The effects of lanthanum on the mechanical properties and microstructure of WC 9(Co 75%Ni) cemented carbide were studied and a rock drilling experiment was carried out.The experimental results show that both transverse rupture strength (TRS) and hardness of WC 9(Co 75%Ni) rare earth cemented carbides can match that of WC 9Co cemented carbide, when La 2O 3 / (Co+Ni) ratio is 0.3%, the abnormal growth of WC grain in the cemented carbide can be restrained effectively, the homogeneity of grain size in microstructure and the wear resistance are improved, which can be matchable to that of WC 9Co cemented carbide for mining.
基金Projects(11705032,11975082,U1967218)supported by the National Natural Science Foundation of ChinaProject(2017GXNSFBA198175)supported by the Natural Science Foundation of Guangxi Province,ChinaProject(AA17204100)supported by the Science and Technology Major Project of Guangxi Province,China。
文摘An excellent extraction selectivity towards Sc over other REEs in 4 mol/L HCl solution was achieved with the separation factor βSc/REEs over 8000 by 2-ethylhexyl phosphoric acid mono 2-ethylhexyl ester(HEHEHP)and the extraction equilibrium can be obtained within 20 min.The extracted Sc can be stripped using 5 mol/L NaOH solution as eluent at 363 K with the stripping rate of 92.1%obtained.The extraction mechanism was clearly elucidated by slope analysis,saturation extraction,IR,and NMR analysis.It was revealed that the extraction of Sc in 4 mol/L HCl solution is still dominated by cation exchange process between P-O-H and Sc,and coordination process between P=O and Sc,with 6 molecules of extractant as dimer participating in the process.Finally,a flowsheet for the recovery of Sc from ion-adsorption rare earth elements(REEs)concentrate was proposed and proved in lab-scale experiment.
基金Project(40873015) supported by the National Natural Science Foundation of ChinaProject(08010302062) supported by the Eleventh Five-year Scientific and Technological Program of Anhui Province,China
文摘Rare earth element (REE) concentrations were measured by ICP-MS for groundwater collected from deep seated Taiyuan Fm limestone aquifer (from -400 to -530 m) in Renlou Coal Mine, northern Anhui Province, China. It can be concluded that the groundwater is warm (34.0-37.2 ℃) C1-Ca, Na type water with circum-neutral pH (7.35-8.28) and high total dissolved solids (TDS, 1 746-2 849 mg/L). The groundwater exhibits heavy REEs enrichment relative to light REEs compared with Post Archean Average Shale (PAAS), as well as their aquifer rocks (limestone). The enrichment of REEs is considered to be controlled by terrigeneous materials (e.g. zircon) in aquifer rocks, whereas the fractionation of REEs is controlled by marine derived materials (e.g. calcite), to a less extent, terrigeneous materials and inorganic complexation. The Ce anomalies normalized to PAAS and aquifer rocks are weak, which probably reflects the signature of the aquifer rock rather than redox conditions or pH. The similarities of REE patterns between groundwater and aquifer rocks imply that aquifer rocks play important roles in controlling the REE characteristics of groundwater, and then provide a probability for discrimination of groundwater sources by using REEs.
文摘Phosphogypsum(PG), the main by-product of phosphoric acid production industries, is considered one of the most important secondary sources of rare earth elements(REEs). The current study focuses on the recovery of REEs content and the residual phosphate content existing in the PG with preserving on the CaSO_(4)skeleton to be used in other various applications. These attainments are carried out using citric acid leaching process via soaking technique. Several dissolution parameters for REEs using citric acid were studied, including soaking time, soaking temperature, citric acid concentration, solid-to-liquid ratio, and recycling of the citrate leaching solutions in the further REEs dissolution experiments. The best-operating conditions were 14 d of soaking time, 7.5% citric acid concentration, and the solid-toliquid ratio of 1/5 at ambient temperature. About 79.57% dissolution efficiency of REEs was achieved using the optimal conditions. Applying four soaking stages by mixing different fresh PG samples with the same citrate solution sequentially, cumulative dissolution efficiency for REEs was found to be 64.7% under optimal soaking conditions. REEs were recovered using Dowex 50X8 resin from citrate solutions with 96% extraction efficiency. Dissolution kinetics proved the pseudo-first-order nature, reversible reactions, and two activation energies for all REEs.
基金Project(51965040)supported by the National Natural Science Foundation of ChinaProject(20181BAB206026)supported by the Natural Science Foundation of Jiangxi Province,China。
文摘The effects of rare earth ytterbium(Yb)addition and hot extrusion on the microstructure and corrosion behavior of as-cast ADC12 were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS)and X-ray diffraction(XRD).The experimental results demonstrate that both the Si phase andβ-Al_(5)FeSi phase in the alloy with 0.9 wt%Yb have been remarkably refined,and the Al3Yb intermetallic compound has also been obtained.The Si,β-Al5FeSi,and rare earth phases are further refined in the alloy at 0.9 wt%Yb and hot extrusion.The results of the immersion corrosion tests and electrochemical experiments show that the corrosion current density(8.56μA/cm^(2))of the alloy with 0.9 wt%Yb addition and hot extrusion is 50.6%lower than the untreated alloy(17.33μA/cm^(2)),and the polarization resistance(9252Ω·cm^(2))was 71.3%higher than the untreated alloy(2654Ω·cm^(2)).The corrosion in the cathode phase in the micro-battery was refined to varying degrees attributable to the addition of Yb and hot extrusion,where the cathode reaction in the corrosion process caused a decrease of the corrosion rate.
基金Project(51904104) supported by the National Natural Science Foundation of ChinaProject(2020JJ5174) supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2019M662780) supported by China Postdoctoral Science FoundationProject(19C0746) supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(2021-2843) supported by College Student Innovation and Entrepreneurship Training Program of Hunan Province,China。
文摘Phosphogypsum(PG)is a potential resource for rare earth elements(REEs).Several studies have been carried out on REE leaching from PG.However,few in-depth studies have investigated the kinetics of this leaching process.In this study,the leaching kinetics of REEs from PG in nitric acid at different temperatures were explored in depth.The experiments show that the maximum leaching recovery for ΣREE was 58.5%,75.9%and 83.4%at 30,60 and 80℃,respectively.Additionally,among La,Ce,Y and Nd,Y had the highest leaching rate.A new shrinking core model(SCM)based on the dissolution reaction of a cylindrical solid particle with interfacial transfer and diffusion across the product layer as the rate-controlling step was deduced and could well fit the leaching process of REEs from PG.The activation energies for the leaching of La,Ce,Y and Nd were determined on the basis of the new cylindrical SCM.In summary,the cylindrical SCM was a more suitable fitting model than the spherical SCM,and the interfacial transfer and diffusion across the product layer were the rate-controlling step for REE leaching from the PG sample.