This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a...In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a good application prospect.Firstly,a numerical virtual flight simulation model based on overlapping dynamic mesh technology is constructed.In order to verify the accuracy of the dynamic grid technology and the calculation of unsteady flow,a numerical simulation of the basic finner projectile without control is carried out.The simulation results are in good agreement with the experiment data which shows that the algorithm used in this paper can also be used in the design and evaluation of the intelligent controller in the numerical virtual flight simulation.Secondly,combined with the real-time control requirements of aerodynamic,attitude and displacement parameters of the projectile during the flight process,the numerical simulations of the basic finner projectile’s pitch channel are carried out under the traditional PID(Proportional-Integral-Derivative)control strategy and the intelligent PID control strategy respectively.The intelligent PID controller based on BP(Back Propagation)neural network can realize online learning and self-optimization of control parameters according to the acquired real-time flight parameters.Compared with the traditional PID controller,the concerned control variable overshoot,rise time,transition time and steady state error and other performance indicators have been greatly improved,and the higher the learning efficiency or the inertia coefficient,the faster the system,the larger the overshoot,and the smaller the stability error.The intelligent control method applying on numerical virtual flight is capable of solving the complicated unsteady motion and flow with the intelligent PID control strategy and has a strong promotion to engineering application.展开更多
A global approximation based adaptive radial basis function(RBF) neural network control strategy is proposed for the trajectory tracking control of supercavitating vehicles(SV).A nominal model is built firstly wit...A global approximation based adaptive radial basis function(RBF) neural network control strategy is proposed for the trajectory tracking control of supercavitating vehicles(SV).A nominal model is built firstly with the unknown disturbance.Next, the control scheme is established consisting of a computed torque controller(CTC) for the practical vehicle and an RBF neural network controller to estimate model error between the practical vehicle and the nominal model. The network weights are adapted by employing a Lyapunov-based design. Then it is shown by the Lyapunov theory that the trajectory tracking errors asymptotically converge to a small neighborhood of zero. The control performance of the proposed controller is illustrated by simulation.展开更多
Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a ta...Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a target maneuver trajectory prediction model based on phase space reconstruction-radial basis function(PSR-RBF)neural network is established by combining the characteristics of trajectory with time continuity.In order to further improve the prediction performance of the model,the rival penalized competitive learning(RPCL)algorithm is introduced to determine the structure of RBF,the Levenberg-Marquardt(LM)and the hybrid algorithm of the improved particle swarm optimization(IPSO)algorithm and the k-means are introduced to optimize the parameter of RBF,and a PSR-RBF neural network is constructed.An independent method of 3D coordinates of the target maneuver trajectory is proposed,and the target manuver trajectory sample data is constructed by using the training data selected in the air combat maneuver instrument(ACMI),and the maneuver trajectory prediction model based on the PSR-RBF neural network is established.In order to verify the precision and real-time performance of the trajectory prediction model,the simulation experiment of target maneuver trajectory is performed.The results show that the prediction performance of the independent method is better,and the accuracy of the PSR-RBF prediction model proposed is better.The prediction confirms the effectiveness and applicability of the proposed method and model.展开更多
An isothermal compressive experiment using Gleeble 1500 thermal simulator was studied to acquire flow stress at different deformation temperatures, strains and strain rates. The artificial neural networks with the err...An isothermal compressive experiment using Gleeble 1500 thermal simulator was studied to acquire flow stress at different deformation temperatures, strains and strain rates. The artificial neural networks with the error back propagation(BP) algorithm was used to establish constitutive model of 2519 aluminum alloy based on the experiment data. The model results show that the systematical error is small(δ=3.3%) when the value of objective function is 0.2, the number of nodes in the hidden layer is 5 and the learning rate is 0.1. Flow stresses of the material under various thermodynamic conditions are predicted by the neural network model, and the predicted results correspond with the experimental results. A knowledge-based constitutive relation model is developed.展开更多
The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the...The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the Back Propagation Artificial Neural Network(BP-ANN) is proposed, which uses the parameters of missile-target intersection to adaptively calculate the initiation delay. The damage probabilities at different radial locations along the same shot line of a given intersection situation are calculated, so as to determine the optimal detonation position. On this basis, the BP-ANN model is used to describe the complex and highly nonlinear relationship between different intersection parameters and the corresponding optimal detonating point position. In the actual terminal engagement process, the fuze initiation delay is quickly determined by the constructed BP-ANN model combined with the missiletarget intersection parameters. The method is validated in the case of the single-shot damage probability evaluation. Comparing with other fuze-warhead coordination methods, the proposed method can produce higher single-shot damage probability under various intersection conditions, while the fuzewarhead coordination effect is less influenced by the location of the aim point.展开更多
To solve the problem of mistake recognition among rice diseases, automatic recognition methods based on BP(back propagation) neural network were studied in this paper for blast, sheath blight and bacterial blight. Cho...To solve the problem of mistake recognition among rice diseases, automatic recognition methods based on BP(back propagation) neural network were studied in this paper for blast, sheath blight and bacterial blight. Chose mobile terminal equipment as image collecting tool and built database of rice leaf images with diseases under threshold segmentation method. Characteristic parameters were extracted from color, shape and texture. Furthermore, parameters were optimized using the single-factor variance analysis and the effects of BP neural network model. The optimization would simplify BP neural network model without reducing the recognition accuracy. The finally model could successfully recognize 98%, 96% and 98% of rice blast, sheath blight and white leaf blight, respectively.展开更多
Seismic signal is generally employed in moving target monitoring due to its robust characteristic.A recognition method for vehicle and personnel with seismic signal sensing system was proposed based on improved neural...Seismic signal is generally employed in moving target monitoring due to its robust characteristic.A recognition method for vehicle and personnel with seismic signal sensing system was proposed based on improved neural network.For analyzing the seismic signal of the moving objects,the seismic signal of person and vehicle was acquisitioned from the seismic sensor,and then feature vectors were extracted with combined methods after filter processing.Finally,these features were put into the improved BP neural network designed for effective signal classification.Compared with previous ways,it is demonstrated that the proposed system presents higher recognition accuracy and validity based on the experimental results.It also shows the effectiveness of the improved BP neural network.展开更多
Based on the basic principles of BP artificial neural network model and the fundamental law of water and sediment yield in a river basin, a BP neural network model is developed by using observed data, with rainfall co...Based on the basic principles of BP artificial neural network model and the fundamental law of water and sediment yield in a river basin, a BP neural network model is developed by using observed data, with rainfall conditions serving as affecting factors. The model has satisfactory performance of learning and generalization and can be also used to assess the influence of human activities on water and sediment yield in a river basin. The model is applied to compute the runoff and sediment transmission at Xingshan, Bixi and Shunlixia stations. Comparison between the results from the model and the observed data shows that the model is basically reasonable and reliable.展开更多
Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to ca...Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to calculate localization of the acoustic emission source.However,in back propagation(BP) neural network,the BP algorithm is a stochastic gradient algorithm virtually,the network may get into local minimum and the result of network training is dissatisfactory.It is a kind of genetic algorithms with the form of quantum chromosomes,the random observation which simulates the quantum collapse can bring diverse individuals,and the evolutionary operators characterized by a quantum mechanism are introduced to speed up convergence and avoid prematurity.Simulation results show that the modeling of neural network based on quantum genetic algorithm has fast convergent and higher localization accuracy,so it has a good application prospect and is worth researching further more.展开更多
Newton's learning algorithm of NN is presented and realized. In theory, the convergence rate of learning algorithm of NN based on Newton's method must be faster than BP's and other learning algorithms, because the ...Newton's learning algorithm of NN is presented and realized. In theory, the convergence rate of learning algorithm of NN based on Newton's method must be faster than BP's and other learning algorithms, because the gradient method is linearly convergent while Newton's method has second order convergence rate. The fast computing algorithm of Hesse matrix of the cost function of NN is proposed and it is the theory basis of the improvement of Newton's learning algorithm. Simulation results show that the convergence rate of Newton's learning algorithm is high and apparently faster than the traditional BP method's, and the robustness of Newton's learning algorithm is also better than BP method' s.展开更多
To ensure the control of the precision of air-fuel ratio(AFR)of port fuel injection(PFI)spark ignition(SI)engines,a chaos radial basis function(RBF)neural network is used to predict the air intake flow of the engine.T...To ensure the control of the precision of air-fuel ratio(AFR)of port fuel injection(PFI)spark ignition(SI)engines,a chaos radial basis function(RBF)neural network is used to predict the air intake flow of the engine.The data of air intake flow is proved to be multidimensionally nonlinear and chaotic.The RBF neural network is used to train the reconstructed phase space of the data.The chaos algorithm is employed to optimize the weights of output layer connection and the radial basis center of Gaussian function in hidden layer.The simulation results obtained from Matlab/Simulink illustrate that the model has higher accuracy compared to the conventional RBF model.The mean absolute error and the mean relative error of the chaos RBF model can reach 0.0017 and 0.48,respectively.展开更多
A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF ...A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF neural network with the initial parameters obtained by k-means learning method. During the iteration procedure of the algorithm, the centers of the neural network were optimized by using the gradient method with these optimized width values. The computational efficiency was maintained by using the multi-threading technique. SODM-RBFNN consists of two RBF neural network models: one is a running model used to predict the product yields of fluid catalytic cracking unit(FCCU) and optimize its operating parameters; the other is a learning model applied to construct or correct a RBF neural network. The running model can be updated by the learning model according to an accuracy criterion. The simulation results of a five-lump kinetic model exhibit its accuracy and generalization capabilities, and practical application in FCCU illustrates its effectiveness.展开更多
The automatic control of cleaning need to be based on the total amount of manure in the house. Therefore, this article established a prediction model for the total amount of manure in a pig house and took the number o...The automatic control of cleaning need to be based on the total amount of manure in the house. Therefore, this article established a prediction model for the total amount of manure in a pig house and took the number of pigs in the house, age, feed intake,feeding time, the time when the ammonia concentration increased the fastest and the daily fixed cleaning time as variable factors for modelling, so that the model could obtain the current manure output according to the real-time input of time. A Backpropagation(BP) neural network was used for training. The cross-validation method was used to select the best hyperparameters, and the genetic algorithm(GA), particle swarm optimization(PSO) algorithm and mind evolutionary algorithm(MEA) were selected to optimize the initial network weights. The results showed that the model could predict the amount of manure in real-time according to the model input. After the cross-validation method determined the hyperparameters, the GA, PSO and MEA were used to optimize the manure prediction model. The GA had the best average performance.展开更多
Three important factors influencing directly the dissolved oxygen (DO) of river including the outflow, the water temperature and the pH, were used as input parameters to set up a BP neural network based on Levenberg-M...Three important factors influencing directly the dissolved oxygen (DO) of river including the outflow, the water temperature and the pH, were used as input parameters to set up a BP neural network based on Levenberg-Marquant algorithm. The neural network model was proposed to evaluate DO in water. The model contains two parts: firstly, the learning sample is unified; secondly, the neural network is used to train the unified samples to ensure the best node number of hidden layer. The proposed model is applied to assessing the DO concentration of the Yellow River in Lanzhou city. The evaluation result is compared with that by the neural network method and the reported result in Lanzhou city. The comparison result indicates that the performance of the neural network model is practically feasible in the assessment of DO. At the same time, the linear interpolation method can add the number of network's learning sample to improve the prediction precision of the network.展开更多
A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite ima...A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite image. The method is based on BPNN. First, three groups learning samples with different resolutions are obtained according to image observation model, and then vector mappings are respectively used to those three group learning samples to speed up the convergence of BPNN, at last, three times consecutive training are carried on the BPNN. Training samples used in each step are of higher resolution than those used in the previous steps, so the increasing weights store a great amount of information for SRR, and network performance and generalization ability are improved greatly. Simulation and generalization tests are carried on the well-trained three-step-training NN respectively, and the reconstruction results with higher resolution images verify the effectiveness and validity of this method.展开更多
The improved ERICA algorithm for ABR flow congestion control is presented based on available bandwidth prediction using the BP neural networks in ATM networks. The switch periodically calculates the available bandwidt...The improved ERICA algorithm for ABR flow congestion control is presented based on available bandwidth prediction using the BP neural networks in ATM networks. The switch periodically calculates the available bandwidth, monitors the load of network and updates the ER value according to the PERICA algorithm. The proposed algorithm can keep better performance than ERICA algorithm in simulations.展开更多
Chaos theory was introduced for water quality, prediction, and the model of water quality prediction was established by combining phase space reconstruction theory and BP neural network forecasting method. Through the...Chaos theory was introduced for water quality, prediction, and the model of water quality prediction was established by combining phase space reconstruction theory and BP neural network forecasting method. Through the phase space reconstruction, the one-dimensional water quality time series were mapped to be multi-dimensional sequence, which enriched the spatial information of water quality change and expanded mapping region of training samples of BP neural network. Established model of combining chaos theory and BP neural network were applied to forecast turbidity time series of a certain reservoir. Contrast to BP neural network method, the relative error and the mean squared error of the combined method had all varying degrees of lower. Results indicated the neural network model with chaos theory had the higher prediction accuracy, at the same time, it had better fault-tolerant capability and generalization performance .展开更多
To improve the deficiency of the control system of finish cooling temperature (FCT), a new model developed from a combination of a multilayer perception neural network as the self-learning system and traditional mathe...To improve the deficiency of the control system of finish cooling temperature (FCT), a new model developed from a combination of a multilayer perception neural network as the self-learning system and traditional mathematical model were brought forward to predict the plate FCT. The relationship between the self-learning factor of heat transfer coefficient and its influencing parameters such as plate thickness, start cooling temperature, was investigated. Simulative calculation indicates that the deficiency of FCT control system is overcome completely, the accuracy of FCT is obviously improved and the difference between the calculated and target FCT is controlled between -15 ℃ and 15 ℃.展开更多
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
文摘In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a good application prospect.Firstly,a numerical virtual flight simulation model based on overlapping dynamic mesh technology is constructed.In order to verify the accuracy of the dynamic grid technology and the calculation of unsteady flow,a numerical simulation of the basic finner projectile without control is carried out.The simulation results are in good agreement with the experiment data which shows that the algorithm used in this paper can also be used in the design and evaluation of the intelligent controller in the numerical virtual flight simulation.Secondly,combined with the real-time control requirements of aerodynamic,attitude and displacement parameters of the projectile during the flight process,the numerical simulations of the basic finner projectile’s pitch channel are carried out under the traditional PID(Proportional-Integral-Derivative)control strategy and the intelligent PID control strategy respectively.The intelligent PID controller based on BP(Back Propagation)neural network can realize online learning and self-optimization of control parameters according to the acquired real-time flight parameters.Compared with the traditional PID controller,the concerned control variable overshoot,rise time,transition time and steady state error and other performance indicators have been greatly improved,and the higher the learning efficiency or the inertia coefficient,the faster the system,the larger the overshoot,and the smaller the stability error.The intelligent control method applying on numerical virtual flight is capable of solving the complicated unsteady motion and flow with the intelligent PID control strategy and has a strong promotion to engineering application.
基金supported by the National Natural Science Foundation of China(5167920161473233)
文摘A global approximation based adaptive radial basis function(RBF) neural network control strategy is proposed for the trajectory tracking control of supercavitating vehicles(SV).A nominal model is built firstly with the unknown disturbance.Next, the control scheme is established consisting of a computed torque controller(CTC) for the practical vehicle and an RBF neural network controller to estimate model error between the practical vehicle and the nominal model. The network weights are adapted by employing a Lyapunov-based design. Then it is shown by the Lyapunov theory that the trajectory tracking errors asymptotically converge to a small neighborhood of zero. The control performance of the proposed controller is illustrated by simulation.
文摘Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a target maneuver trajectory prediction model based on phase space reconstruction-radial basis function(PSR-RBF)neural network is established by combining the characteristics of trajectory with time continuity.In order to further improve the prediction performance of the model,the rival penalized competitive learning(RPCL)algorithm is introduced to determine the structure of RBF,the Levenberg-Marquardt(LM)and the hybrid algorithm of the improved particle swarm optimization(IPSO)algorithm and the k-means are introduced to optimize the parameter of RBF,and a PSR-RBF neural network is constructed.An independent method of 3D coordinates of the target maneuver trajectory is proposed,and the target manuver trajectory sample data is constructed by using the training data selected in the air combat maneuver instrument(ACMI),and the maneuver trajectory prediction model based on the PSR-RBF neural network is established.In order to verify the precision and real-time performance of the trajectory prediction model,the simulation experiment of target maneuver trajectory is performed.The results show that the prediction performance of the independent method is better,and the accuracy of the PSR-RBF prediction model proposed is better.The prediction confirms the effectiveness and applicability of the proposed method and model.
文摘An isothermal compressive experiment using Gleeble 1500 thermal simulator was studied to acquire flow stress at different deformation temperatures, strains and strain rates. The artificial neural networks with the error back propagation(BP) algorithm was used to establish constitutive model of 2519 aluminum alloy based on the experiment data. The model results show that the systematical error is small(δ=3.3%) when the value of objective function is 0.2, the number of nodes in the hidden layer is 5 and the learning rate is 0.1. Flow stresses of the material under various thermodynamic conditions are predicted by the neural network model, and the predicted results correspond with the experimental results. A knowledge-based constitutive relation model is developed.
文摘The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the Back Propagation Artificial Neural Network(BP-ANN) is proposed, which uses the parameters of missile-target intersection to adaptively calculate the initiation delay. The damage probabilities at different radial locations along the same shot line of a given intersection situation are calculated, so as to determine the optimal detonation position. On this basis, the BP-ANN model is used to describe the complex and highly nonlinear relationship between different intersection parameters and the corresponding optimal detonating point position. In the actual terminal engagement process, the fuze initiation delay is quickly determined by the constructed BP-ANN model combined with the missiletarget intersection parameters. The method is validated in the case of the single-shot damage probability evaluation. Comparing with other fuze-warhead coordination methods, the proposed method can produce higher single-shot damage probability under various intersection conditions, while the fuzewarhead coordination effect is less influenced by the location of the aim point.
基金Supported by Quality and Brand Construction of"Internet+County Characteristic Agricultural Products"(ZY17C06)
文摘To solve the problem of mistake recognition among rice diseases, automatic recognition methods based on BP(back propagation) neural network were studied in this paper for blast, sheath blight and bacterial blight. Chose mobile terminal equipment as image collecting tool and built database of rice leaf images with diseases under threshold segmentation method. Characteristic parameters were extracted from color, shape and texture. Furthermore, parameters were optimized using the single-factor variance analysis and the effects of BP neural network model. The optimization would simplify BP neural network model without reducing the recognition accuracy. The finally model could successfully recognize 98%, 96% and 98% of rice blast, sheath blight and white leaf blight, respectively.
基金Project(61201028)supported by the National Natural Science Foundation of ChinaProject(YWF-12-JFGF-060)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2011ZD51048)supported by Aviation Science Foundation of China
文摘Seismic signal is generally employed in moving target monitoring due to its robust characteristic.A recognition method for vehicle and personnel with seismic signal sensing system was proposed based on improved neural network.For analyzing the seismic signal of the moving objects,the seismic signal of person and vehicle was acquisitioned from the seismic sensor,and then feature vectors were extracted with combined methods after filter processing.Finally,these features were put into the improved BP neural network designed for effective signal classification.Compared with previous ways,it is demonstrated that the proposed system presents higher recognition accuracy and validity based on the experimental results.It also shows the effectiveness of the improved BP neural network.
文摘Based on the basic principles of BP artificial neural network model and the fundamental law of water and sediment yield in a river basin, a BP neural network model is developed by using observed data, with rainfall conditions serving as affecting factors. The model has satisfactory performance of learning and generalization and can be also used to assess the influence of human activities on water and sediment yield in a river basin. The model is applied to compute the runoff and sediment transmission at Xingshan, Bixi and Shunlixia stations. Comparison between the results from the model and the observed data shows that the model is basically reasonable and reliable.
基金supported by the National Natural Science Foundation of China (51075068)the Southeast University Science Foundation Funded Program (KJ2009348)
文摘Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to calculate localization of the acoustic emission source.However,in back propagation(BP) neural network,the BP algorithm is a stochastic gradient algorithm virtually,the network may get into local minimum and the result of network training is dissatisfactory.It is a kind of genetic algorithms with the form of quantum chromosomes,the random observation which simulates the quantum collapse can bring diverse individuals,and the evolutionary operators characterized by a quantum mechanism are introduced to speed up convergence and avoid prematurity.Simulation results show that the modeling of neural network based on quantum genetic algorithm has fast convergent and higher localization accuracy,so it has a good application prospect and is worth researching further more.
文摘Newton's learning algorithm of NN is presented and realized. In theory, the convergence rate of learning algorithm of NN based on Newton's method must be faster than BP's and other learning algorithms, because the gradient method is linearly convergent while Newton's method has second order convergence rate. The fast computing algorithm of Hesse matrix of the cost function of NN is proposed and it is the theory basis of the improvement of Newton's learning algorithm. Simulation results show that the convergence rate of Newton's learning algorithm is high and apparently faster than the traditional BP method's, and the robustness of Newton's learning algorithm is also better than BP method' s.
基金Project(51176014)supported by the National Natural Science Foundation of ChinaProject(2016JJ2003)supported by Natural Scienceof Hunan Province,ChinaProject(KF1605)supported by Key Laboratory of Safety Design and Reliability Technology of Engineering Vehicle in Hunan Province,China。
文摘To ensure the control of the precision of air-fuel ratio(AFR)of port fuel injection(PFI)spark ignition(SI)engines,a chaos radial basis function(RBF)neural network is used to predict the air intake flow of the engine.The data of air intake flow is proved to be multidimensionally nonlinear and chaotic.The RBF neural network is used to train the reconstructed phase space of the data.The chaos algorithm is employed to optimize the weights of output layer connection and the radial basis center of Gaussian function in hidden layer.The simulation results obtained from Matlab/Simulink illustrate that the model has higher accuracy compared to the conventional RBF model.The mean absolute error and the mean relative error of the chaos RBF model can reach 0.0017 and 0.48,respectively.
基金Projects(60974031,60704011,61174128)supported by the National Natural Science Foundation of China
文摘A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF neural network with the initial parameters obtained by k-means learning method. During the iteration procedure of the algorithm, the centers of the neural network were optimized by using the gradient method with these optimized width values. The computational efficiency was maintained by using the multi-threading technique. SODM-RBFNN consists of two RBF neural network models: one is a running model used to predict the product yields of fluid catalytic cracking unit(FCCU) and optimize its operating parameters; the other is a learning model applied to construct or correct a RBF neural network. The running model can be updated by the learning model according to an accuracy criterion. The simulation results of a five-lump kinetic model exhibit its accuracy and generalization capabilities, and practical application in FCCU illustrates its effectiveness.
基金the National Key Research and Development Program (2018YFD0500704-03)Proiect of Ministry of Agriculture and Rura Affairs (SK201707)。
文摘The automatic control of cleaning need to be based on the total amount of manure in the house. Therefore, this article established a prediction model for the total amount of manure in a pig house and took the number of pigs in the house, age, feed intake,feeding time, the time when the ammonia concentration increased the fastest and the daily fixed cleaning time as variable factors for modelling, so that the model could obtain the current manure output according to the real-time input of time. A Backpropagation(BP) neural network was used for training. The cross-validation method was used to select the best hyperparameters, and the genetic algorithm(GA), particle swarm optimization(PSO) algorithm and mind evolutionary algorithm(MEA) were selected to optimize the initial network weights. The results showed that the model could predict the amount of manure in real-time according to the model input. After the cross-validation method determined the hyperparameters, the GA, PSO and MEA were used to optimize the manure prediction model. The GA had the best average performance.
文摘Three important factors influencing directly the dissolved oxygen (DO) of river including the outflow, the water temperature and the pH, were used as input parameters to set up a BP neural network based on Levenberg-Marquant algorithm. The neural network model was proposed to evaluate DO in water. The model contains two parts: firstly, the learning sample is unified; secondly, the neural network is used to train the unified samples to ensure the best node number of hidden layer. The proposed model is applied to assessing the DO concentration of the Yellow River in Lanzhou city. The evaluation result is compared with that by the neural network method and the reported result in Lanzhou city. The comparison result indicates that the performance of the neural network model is practically feasible in the assessment of DO. At the same time, the linear interpolation method can add the number of network's learning sample to improve the prediction precision of the network.
文摘A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite image. The method is based on BPNN. First, three groups learning samples with different resolutions are obtained according to image observation model, and then vector mappings are respectively used to those three group learning samples to speed up the convergence of BPNN, at last, three times consecutive training are carried on the BPNN. Training samples used in each step are of higher resolution than those used in the previous steps, so the increasing weights store a great amount of information for SRR, and network performance and generalization ability are improved greatly. Simulation and generalization tests are carried on the well-trained three-step-training NN respectively, and the reconstruction results with higher resolution images verify the effectiveness and validity of this method.
文摘The improved ERICA algorithm for ABR flow congestion control is presented based on available bandwidth prediction using the BP neural networks in ATM networks. The switch periodically calculates the available bandwidth, monitors the load of network and updates the ER value according to the PERICA algorithm. The proposed algorithm can keep better performance than ERICA algorithm in simulations.
文摘Chaos theory was introduced for water quality, prediction, and the model of water quality prediction was established by combining phase space reconstruction theory and BP neural network forecasting method. Through the phase space reconstruction, the one-dimensional water quality time series were mapped to be multi-dimensional sequence, which enriched the spatial information of water quality change and expanded mapping region of training samples of BP neural network. Established model of combining chaos theory and BP neural network were applied to forecast turbidity time series of a certain reservoir. Contrast to BP neural network method, the relative error and the mean squared error of the combined method had all varying degrees of lower. Results indicated the neural network model with chaos theory had the higher prediction accuracy, at the same time, it had better fault-tolerant capability and generalization performance .
基金Projects(50634030) supported by the National Natural Science Foundation of China
文摘To improve the deficiency of the control system of finish cooling temperature (FCT), a new model developed from a combination of a multilayer perception neural network as the self-learning system and traditional mathematical model were brought forward to predict the plate FCT. The relationship between the self-learning factor of heat transfer coefficient and its influencing parameters such as plate thickness, start cooling temperature, was investigated. Simulative calculation indicates that the deficiency of FCT control system is overcome completely, the accuracy of FCT is obviously improved and the difference between the calculated and target FCT is controlled between -15 ℃ and 15 ℃.