针对传统快速随机搜索树^(*)(rapidly-exploring random tree^(*),RRT^(*))算法收敛速率较慢,且不适用于动态场景等问题,提出一种基于目标点偏置和冗余节点删除的改进RRT*算法,用于解决移动机器人快速找到无碰撞最优路径的问题。此算法...针对传统快速随机搜索树^(*)(rapidly-exploring random tree^(*),RRT^(*))算法收敛速率较慢,且不适用于动态场景等问题,提出一种基于目标点偏置和冗余节点删除的改进RRT*算法,用于解决移动机器人快速找到无碰撞最优路径的问题。此算法在RRT^(*)算法基础上,首先对采样点进行优化处理,保证路径最优的同时减少搜寻时间;其次引入路径节点最大值概念,删除扩展树冗余节点以提高算法效率;最后结合动态窗口(dynamic window approaches,DWA)算法提高路径的安全性和平滑性,实现对动态障碍物的避障。通过3种不同地图下的仿真验证,改进算法能有效提升路径质量,且大幅降低运行时间。展开更多
针对只有硬模块的布图规划问题,通常将其构建成组合优化模型,但求解过程时间成本高。为提高求解效率,提出了一种基于非光滑解析数学规划的布图规划算法。基于布图中器件的坐标表示,构建了一个泛化的非光滑解析数学规划模型,将不同场景...针对只有硬模块的布图规划问题,通常将其构建成组合优化模型,但求解过程时间成本高。为提高求解效率,提出了一种基于非光滑解析数学规划的布图规划算法。基于布图中器件的坐标表示,构建了一个泛化的非光滑解析数学规划模型,将不同场景下的布图规划问题的不同优化阶段处理为该泛化模型的特例,并利用共轭次梯度算法(conjugate sub-gradient algorithm,CSA)对其进行求解。针对固定轮廓布图规划问题,通过统一框架下的全局布图规划、合法化、局部优化三个阶段,实现了在固定轮廓约束下的线长优化。针对无固定轮廓约束问题,提出了带黄金分割策略的共轭次梯度算法(conjugate sub-gradient algorithm with golden section strategy,CSA_GSS),利用黄金分割策略缩小固定轮廓的面积,达到面积和线长双优化的效果。实验在GSRC测试电路上与基于B*-树表示的布图规划算法进行比较,该算法对于大规模电路在线长和时间方面均占据优势。实验结果表明,该算法能以更低的时间复杂度获得更优的线长。展开更多
针对电池储能(battery energy storage system,BESS)平抑风电波动过程中电池单元荷电状态(state of charge,SOC)均衡性较差且未考虑风储净收益的问题,提出了风电波动平抑下考虑SOC均衡及收益的BESS功率分配策略。首先,建立综合考虑售电...针对电池储能(battery energy storage system,BESS)平抑风电波动过程中电池单元荷电状态(state of charge,SOC)均衡性较差且未考虑风储净收益的问题,提出了风电波动平抑下考虑SOC均衡及收益的BESS功率分配策略。首先,建立综合考虑售电收益、弃风惩罚、缺电惩罚及BESS运行成本等多个因素的风电并网指令优化模型,以并网指令波动率、电池组SOC标准差等多个因素为约束条件,提出改进算术优化算法(improved arithmetic optimization algorithm,IAOA)求解该优化模型。然后,将BESS划分为两个电池组,设计了BESS双层功率分配方法(double-layer power allocation method,DPAM),上层将BESS充放电指令分配给两个电池组,下层根据最大充放电功率原则或新型SOC均衡原则将电池组充放电指令分配给各自的电池单元。最后,通过仿真对所提策略进行了验证。仿真结果表明:IAOA加快了寻优速度,提高了寻优精度;DPAM提升了电池组内电池单元SOC的均衡速度,改善了均衡程度;提出的功率分配策略进一步降低了风电并网波动率,同时提高了风储系统净收益。展开更多
文摘针对传统快速随机搜索树^(*)(rapidly-exploring random tree^(*),RRT^(*))算法收敛速率较慢,且不适用于动态场景等问题,提出一种基于目标点偏置和冗余节点删除的改进RRT*算法,用于解决移动机器人快速找到无碰撞最优路径的问题。此算法在RRT^(*)算法基础上,首先对采样点进行优化处理,保证路径最优的同时减少搜寻时间;其次引入路径节点最大值概念,删除扩展树冗余节点以提高算法效率;最后结合动态窗口(dynamic window approaches,DWA)算法提高路径的安全性和平滑性,实现对动态障碍物的避障。通过3种不同地图下的仿真验证,改进算法能有效提升路径质量,且大幅降低运行时间。
文摘针对只有硬模块的布图规划问题,通常将其构建成组合优化模型,但求解过程时间成本高。为提高求解效率,提出了一种基于非光滑解析数学规划的布图规划算法。基于布图中器件的坐标表示,构建了一个泛化的非光滑解析数学规划模型,将不同场景下的布图规划问题的不同优化阶段处理为该泛化模型的特例,并利用共轭次梯度算法(conjugate sub-gradient algorithm,CSA)对其进行求解。针对固定轮廓布图规划问题,通过统一框架下的全局布图规划、合法化、局部优化三个阶段,实现了在固定轮廓约束下的线长优化。针对无固定轮廓约束问题,提出了带黄金分割策略的共轭次梯度算法(conjugate sub-gradient algorithm with golden section strategy,CSA_GSS),利用黄金分割策略缩小固定轮廓的面积,达到面积和线长双优化的效果。实验在GSRC测试电路上与基于B*-树表示的布图规划算法进行比较,该算法对于大规模电路在线长和时间方面均占据优势。实验结果表明,该算法能以更低的时间复杂度获得更优的线长。
文摘针对电池储能(battery energy storage system,BESS)平抑风电波动过程中电池单元荷电状态(state of charge,SOC)均衡性较差且未考虑风储净收益的问题,提出了风电波动平抑下考虑SOC均衡及收益的BESS功率分配策略。首先,建立综合考虑售电收益、弃风惩罚、缺电惩罚及BESS运行成本等多个因素的风电并网指令优化模型,以并网指令波动率、电池组SOC标准差等多个因素为约束条件,提出改进算术优化算法(improved arithmetic optimization algorithm,IAOA)求解该优化模型。然后,将BESS划分为两个电池组,设计了BESS双层功率分配方法(double-layer power allocation method,DPAM),上层将BESS充放电指令分配给两个电池组,下层根据最大充放电功率原则或新型SOC均衡原则将电池组充放电指令分配给各自的电池单元。最后,通过仿真对所提策略进行了验证。仿真结果表明:IAOA加快了寻优速度,提高了寻优精度;DPAM提升了电池组内电池单元SOC的均衡速度,改善了均衡程度;提出的功率分配策略进一步降低了风电并网波动率,同时提高了风储系统净收益。