Histogram of collinear gradient-enhanced coding (HCGEC), a robust key point descriptor for multi-spectral image matching, is proposed. The HCGEC mainly encodes rough structures within an image and suppresses detaile...Histogram of collinear gradient-enhanced coding (HCGEC), a robust key point descriptor for multi-spectral image matching, is proposed. The HCGEC mainly encodes rough structures within an image and suppresses detailed textural information, which is desirable in multi-spectral image matching. Experiments on two multi-spectral data sets demonstrate that the proposed descriptor can yield significantly better results than some state-of- the-art descriptors.展开更多
基于植被的光谱特征,利用监督分类、植被指数(NDV I)和目视解译等方法,分别用SPOT-5、Q u ickB ird高分辨率卫星遥感影像对东沙岛植被信息进行提取,并作了比对分析。研究结果表明:利用高分辨率遥感图像对东沙岛等小型岛屿的植被信息提...基于植被的光谱特征,利用监督分类、植被指数(NDV I)和目视解译等方法,分别用SPOT-5、Q u ickB ird高分辨率卫星遥感影像对东沙岛植被信息进行提取,并作了比对分析。研究结果表明:利用高分辨率遥感图像对东沙岛等小型岛屿的植被信息提取是可行的;SPOT-5多光谱数据具备了提取小型海岛植被信息、掌握其植被覆盖状况的能力;与SPOT-5多光谱数据相比,Q u ickB ird多光谱数据在植被精细分类信息的提取方面更具优势。展开更多
文摘Histogram of collinear gradient-enhanced coding (HCGEC), a robust key point descriptor for multi-spectral image matching, is proposed. The HCGEC mainly encodes rough structures within an image and suppresses detailed textural information, which is desirable in multi-spectral image matching. Experiments on two multi-spectral data sets demonstrate that the proposed descriptor can yield significantly better results than some state-of- the-art descriptors.
文摘基于植被的光谱特征,利用监督分类、植被指数(NDV I)和目视解译等方法,分别用SPOT-5、Q u ickB ird高分辨率卫星遥感影像对东沙岛植被信息进行提取,并作了比对分析。研究结果表明:利用高分辨率遥感图像对东沙岛等小型岛屿的植被信息提取是可行的;SPOT-5多光谱数据具备了提取小型海岛植被信息、掌握其植被覆盖状况的能力;与SPOT-5多光谱数据相比,Q u ickB ird多光谱数据在植被精细分类信息的提取方面更具优势。