期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
改进的QPSO-BP算法的铀价格预测模型及应用 被引量:3
1
作者 陈建宏 周汉陵 +1 位作者 于凤玲 杨珊 《计算机工程与应用》 CSCD 2013年第21期235-239,244,共6页
铀产品价格的变化直接决定了铀矿项目的价值,铀产品价格的预测,可提高企业的经营决策能力和抗风险能力。为提高预测的精度,采用基于改进的量子粒子群算法优化训练BP神经网络的学习算法,对铀价格进行建模预测。采用改进的QPSO算法优化BP... 铀产品价格的变化直接决定了铀矿项目的价值,铀产品价格的预测,可提高企业的经营决策能力和抗风险能力。为提高预测的精度,采用基于改进的量子粒子群算法优化训练BP神经网络的学习算法,对铀价格进行建模预测。采用改进的QPSO算法优化BP网络的权值与阈值。将通过优化搜索得到的粒子的位置向量解码作为网络的权值与阈值,选择网络结构5-11-1对铀价格进行预测。结果表明:QPSO-BP模型的预测精度(0.15%)高于PSO-BP模型(4.55%)与BP模型(30.86%)。泛化能力指标平均相对变动值为0.002 5,预测结果的泛化能力提高。相对误差分布集中,预测结果稳定。说明该模型在铀价格预测中有效,对项目投资决策有一定的参考价值。 展开更多
关键词 价格预测 量子粒子群算法 量子粒子群算法(qpso)-反向传播(bp)模型 铀价
在线阅读 下载PDF
QPSO优化BP网络预测烟蚜发生量 被引量:2
2
作者 邱靖 杨毅 +2 位作者 秦西云 李昆林 陈克平 《云南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第4期561-564,共4页
为有效地预测烟蚜发生量,利用BP神经网络理论和方法建立了烟蚜发生量预测模型,并运用QPSO算法优化BP神经网络的连接权值和阈值,以此确定最优连接权值和阈值。应用该模型以云南省玉溪市红塔区2003—2006年的烟蚜发生量历史数据为训练样本... 为有效地预测烟蚜发生量,利用BP神经网络理论和方法建立了烟蚜发生量预测模型,并运用QPSO算法优化BP神经网络的连接权值和阈值,以此确定最优连接权值和阈值。应用该模型以云南省玉溪市红塔区2003—2006年的烟蚜发生量历史数据为训练样本,对2007—2009年烟蚜发生量进行预测,其预测精度为99.35%,最小完成时间30 s,平均完成时间34.5 s,运行次数19次,预测效果明显优于其他预测模型。实验表明:该模型比其他预测模型预测结果更有效可行,收敛速度更快,稳定性更强,能解决预测、聚类方面的类似问题,为烟蚜的综合防治提供了理论依据。 展开更多
关键词 bp网络 qpso算法 烟蚜 发生量 预测模型
在线阅读 下载PDF
一种应用在RFID定位的CQPSO-BP室内无线信道建模方法 被引量:7
3
作者 兰庆庆 肖本贤 何怡刚 《小型微型计算机系统》 CSCD 北大核心 2019年第4期760-764,共5页
针对无线信号传播路径损耗模型容易受环境影响而无法正确描述接收信号强度值与距离之间关系的问题,本文提出一种文化量子粒子群优化(CQPSO)算法与BP神经网络结合的新算法,并用其构建室内无线信号传播路径损耗模型.该算法先是通过CQPSO... 针对无线信号传播路径损耗模型容易受环境影响而无法正确描述接收信号强度值与距离之间关系的问题,本文提出一种文化量子粒子群优化(CQPSO)算法与BP神经网络结合的新算法,并用其构建室内无线信号传播路径损耗模型.该算法先是通过CQPSO算法实现BP神经网络权值以及阈值的迭代寻优;然后在合理地定义并提取信号样本之后利用BP神经网络建立室内无线信号传播模型.对比结果表明,新算法在数据拟合的稳定性和准确性都优于传统的BP神经网络.通过在RFID定位系统中的实际应用验证了通过新算法建立的路径损耗模型的实用性和稳定性且与传统的定位算法相比定位精度更高. 展开更多
关键词 RFID定位 文化量子粒子群优化算法 bp神经网络 无线信号传播模型 数据拟合
在线阅读 下载PDF
混沌理论与BP网络融合的稻瘟病预测模型 被引量:8
4
作者 邱靖 吴瑞武 +2 位作者 黄雁鸿 杨毅 彭莞云 《农业工程学报》 EI CAS CSCD 北大核心 2010年第S2期88-93,共6页
为了能更有效地预测稻瘟病的发生,将混沌理论(G-P算法)与BP人工神经网络融合建立了稻瘟病预测模型,并运用QPSO算法优化BP神经网络,避免了BP算法易陷入局部极小值的缺陷。运用G-P算法对云南省凤庆县历年稻瘟病发病情况的历史数据进行了... 为了能更有效地预测稻瘟病的发生,将混沌理论(G-P算法)与BP人工神经网络融合建立了稻瘟病预测模型,并运用QPSO算法优化BP神经网络,避免了BP算法易陷入局部极小值的缺陷。运用G-P算法对云南省凤庆县历年稻瘟病发病情况的历史数据进行了研究。研究发现最小嵌入空间维及K熵都为正数,故稻瘟病的发生具有一定的混沌特性,从而确定了模型输入层的个数。应用该模型对2001-2009年稻瘟病发生程度进行预测,并与其他预测模型进行比较。结果表明:该模型预测的准确率和收敛速度明显高于其他预测模型,且预测结果有效可行,为解决预测、分类及模式识别等问题提供了新的解决途径。 展开更多
关键词 混沌理论 bp算法 神经网络 量子粒子群优化算法 稻瘟病预测模型
在线阅读 下载PDF
基于量子粒子群优化反向传播神经网络的手势识别 被引量:6
5
作者 杨志奇 孙罡 《计算机应用》 CSCD 北大核心 2014年第A01期137-140,共4页
反向传播(BP)神经网络算法在手势识别中得到了广泛的应用。为了对算法进行改进以提高BP神经网络的学习效率,提出一种基于量子粒子群优化BP神经网络的手势识别训练算法。在手势识别过程中,首先采用量子粒子群算法(QPSO)训练BP神经网络,... 反向传播(BP)神经网络算法在手势识别中得到了广泛的应用。为了对算法进行改进以提高BP神经网络的学习效率,提出一种基于量子粒子群优化BP神经网络的手势识别训练算法。在手势识别过程中,首先采用量子粒子群算法(QPSO)训练BP神经网络,获得优化的BP神经网络权值和阈值;合理地定义并提取BP神经网络的手势识别样本;最后采用训练过的BP神经网络对动态手势进行识别。该算法简单,不依赖初始值,并且收敛速度快,尤其对于高维复杂问题,能保证收敛到最优解。实验结果表明,该算法平均训练时间达到5.15 s,识别正确率达到95.1%,效果明显优于一般的BP神经网络算法。 展开更多
关键词 反向传播神经网络 量子粒子群算法 手势识别 权值 阈值
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部